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Abstract—Nearly half of all small satellites launched between 2000 and 2016 have experienced partial or complete failures. Detecting
the anomalies and faults responsible for such failures and responding to them rapidly may help increase the success rates of future
small satellite missions. However, developing and implementing platform-specific and comprehensive fault management solutions can
be cost-prohibitive to most small satellite teams. To enable such teams to achieve this capability quickly and cost-efficiently, we have
developed a reusable and fully data-driven framework and associated algorithms to detect and isolate anomalous behaviors. This
work is supported by NASA and utilizes correlations between system operational variables and Machine Learning (ML) techniques
to generate real-time estimates of expected nominal behavior. Large differences between expected and observed behavior captured
through sensor measurements may indicate the presence of anomalies or faults. Since this approach monitors sensor streams for new
behavior, a faults database is not required, and anomalies or faults not previously known are also expected to be detected.

To automate this framework, a set of algorithms are developed that use a small amount of normal operational data from a satellite
system (or a subsystem) to train the required models. The algorithms utilize physical dependencies between the system’s operational
variables that are extracted using a Dynamic Time Warping (DTW) technique and ML regression models. The system’s battery metrics,
current and voltage, are considered the roots of trust to diagnose other system operational variables selected based on the DTW
correlation strengths. Battery metrics are selected as they can be independently and reliably measured. Fluctuations in a rolling
window of battery current and voltage measurements are extracted into features such as window average, window maximum, window
minimum, and several others. These features (predictors) and the individual sensors’ readings (targets) are then utilized for training
the ML regression models. During a mission, the same battery features are extracted in real-time and fed to the trained ML models
to estimate sensors’ measurements expected during nominal system behavior. Then, the cumulative error between predicted and
observed measurements and its slope are calculated. An anomaly flag is raised when these two values cross dynamic thresholds
computed based on their recent values and some preset weights. Due to the one-to-one nature of the independent mappings from
battery metrics to each operational variable, the anomaly is also simultaneously isolated to the sensor itself or the subsystem where
it is located. The framework also includes automated testing of the trained ML models and anomaly detection parameters selected
by artificially injecting different types of anomalies. The injected anomalies relate to loose connections, abrupt sensor failure, sensor
drift, data corruption, and others. In this work, the implementation of this framework on datasets generated from laboratory tests on
a CubeSat platform is discussed. Results show nearly 90% average detection rate and less than 1% average false positives rates for
many analog operational variables strongly correlated to battery metrics.

Keywords—small satellites, anomaly detection, batteries, data-driven methods, reusable framework, sensor faults, cyber-intrusion,
data corruption
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1 INTRODUCTION

Small satellite technology is revolutionizing the space
industry with a variety of missions spread across scien-
tific, defense, and commercial applications [1]. Ensuring
that these systems operate reliably with minimal inter-
ruptions is a concern among mission developers and
operators. Anomalies or unexpected events can occur in
the different satellite subsystems due to various environ-
mental factors, hardware or sensor faults, software bugs,
and maybe even cyber intrusions [2]. These may lead to
immediate or eventual failure of subsystems and also
entire missions.

Accurately and promptly detecting and mitigating
such anomalies is very critical to the successful execution
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of missions and managing operational costs. Traditional
methods for anomaly detection rely on predetermined
thresholds or simple rule-based systems [3]. More re-
cently, physics model-based fault detection methods [4]
are also popular where the output from the simulation
of a subsystem is compared against observed behaviors
to detect discrepancies and the associated faults. De-
veloping these methods requires extensive testing and
knowledge of the different subsystems and expected
values during operation. Still, these fall short of captur-
ing complex and evolving anomalies. There also exist
circumstances in which anomalies are very subtle and
cause the affected operational variable to change only
slightly which do not breach the preset thresholds. In
addition to the technical limitations of these methods,
resources and time constraints make it challenging to
develop accurate thresholds and rules for each platform
[5]. Developing and implementing platform-specific and
comprehensive fault management solutions can be espe-
cially cost-prohibitive to most small satellite teams.



It has been reported that nearly half of all small
satellites launched between 2000 and 2016 have expe-
rienced partial or complete failures [6]. Detecting the
anomalies and faults responsible for such failures and
responding to them rapidly may help increase the suc-
cess rates of future small satellite missions. To achieve
this, several data-driven approaches have been proposed
and/or have been implemented for satellites. One such
method utilized operational data and its telemetry logs
from a satellite to extract reboot labels and identify
outliers that were observed before such reboots. Then,
using statistical methods, their timestamps were used to
predict the probability of future faults [7]. One approach
utilized Recurrent Neural Network (RNN) [8] and sev-
eral time series inputs to detect anomalies. A general-
purpose data-driven monitoring system was developed
[9] that used clustering techniques to calculate a dis-
tance metric that indicated how different a new vector
representing the current state of a system was from
nominal behavior. Another method utilizing machine
learning also involved a classifier method after the data
was reduced using principal component analysis [10].
Another machine learning-based method [11] utilized
an unsupervised artificial neural network method for
dimensionality reduction followed by a clustering ap-
proach to detect outliers. Then, a supervised approach
is utilized to identify the small set of faults included in
the data. The methods described here utilized multiple
operational variables or their time series data as input,
needed reboot/fault labels from existing methods, and
were difficult to interpret for operators to generate mit-
igation strategies.

To overcome these challenges, and enable small
satellite teams to achieve this capability cost-efficiently,
we propose a reusable and fully data-driven framework
and associated algorithms to detect and isolate
anomalous behaviors. The uniqueness of this approach
lies in abstracting a system as a graph of nodes
(operational variables) that are connected to others
through edges. Here, an edge connecting two nodes
represents a strong correlation and also an ML model
that can predict the behavior of one node by using
features from only the other node. This approach makes
this framework very viable for the interpretation of
anomalies. Overall, this approach utilizes correlations
between system operational variables, feature extraction
methods, and Machine Learning (ML) techniques
to generate real-time estimates of expected nominal
behavior [12]. Large differences between ML model
predictions and observed behaviors may indicate the
presence of anomalies or faults. Since this approach
monitors sensor streams for new behavior, a faults
signature database is not required, and anomalies or
faults not previously known can also be detected.

To automate this framework, a set of algorithms are
developed that use a small amount of normal oper-
ational data from a satellite system (or a subsystem)

to train the required models. The algorithms utilize
physical dependencies between the system’s operational
variables that are extracted using a Dynamic Time Warp-
ing (DTW) technique and ML regression models. The
system’s battery metrics, current and/or voltage, are
considered the roots of trust to diagnose other system
operational variables selected based on the DTW corre-
lation strengths. Battery metrics are selected as they can
be independently and reliably measured but a different
variable can also be selected instead. Features (predic-
tors) are extracted from battery measurements and dif-
ferent individual operational variables (targets) are uti-
lized for training the ML regression models. The trained
ML models generate their estimated values assuming
nominal system behavior. These predictions for each
operational variable are compared directly with their
measured values using DTW technique. An anomaly
flag is raised when the DTW distance-guided warning
counter crosses a dynamically generated threshold. Due
to the one-to-one nature of the independent mappings
from battery metrics to each operational variable, the
anomaly is also simultaneously isolated to the opera-
tional variable. The framework also includes automated
testing of the trained ML models and anomaly detec-
tion parameters selected by artificially injecting different
types of anomalies. The injected anomalies relate to loose
connections, abrupt sensor failure, sensor drift, data
corruption, and others. In this work, the implementation
of this framework on datasets generated from laboratory
tests on a small satellite platform is discussed.

2 DATASET

The dataset used to demonstrate this framework is
provided by Arogtec Inc. Argotec has experience in
small satellite hardware development, testing, and flight
heritage including the recently successful ArgoMoon and
LiciaCube missions. The data that is being utilized to
demonstrate the proposed framework was generated
in Argotec’s test facilities, and the data and the setup
utilized are described below.

2.1 Setup

The setup is composed of a satellite simulator and a
ground station system. The satellite simulator involves
two kinds of components: a satellite built with ground
model subsystems and EGSE (Electronic Ground Sup-
port Equipment) simulating the environment or substi-
tuting missing subsystems to achieve a nominal behavior
of the rest of the satellite.

The following is a brief description of the subsystems
involved in the system architecture:

Battery: A device composed of several cells provides
energy to the satellite when the solar panels are not
pointing at the sun.

Solar Panel Array (SPA): Solar panel provides power
to the satellite. SPA is simulated with a power supply
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Fig. 1. System architecture to simulate satellite operation

and does not exactly match the current and voltage
dynamics observed in space.

Power Converter and Distribution Unit (PCDU): The
PCDU distributes power to different satellite subsystems
at different required voltage levels, protects the circuits
against shorts, and provides telemetry to the On-Board
Computer (OBC).

Payloads 1,2: Scientific equipment (cameras) installed
on the satellite.

Range Finder: Device to measure the distance to
nearby objects in space.

Propulsion System (PS): A propulsion system device
is simulated and its behavior is not distinguishable from
the original flight model except for the gas pressure
contained in the tank (a static value will be provided
despite the different temperature conditions).

Attitude Determination and Control System (ADCS):
ADCS is the device responsible for satellite orientation.
This is similar to the flight hardware but does not have
mounted wheels responsible for inertia compensation.

Realtime Dynamics Processor (RDP): EGSE dedicated
to the environment simulation and sensor signal simu-
lator are directly connected to the ADCS.

Radio: The radio device is simulated using an em-
bedded board. Power consumption is not simulated by
the system setup. This subsystem does not have a wide
signal dynamic, and it is advised to consider only data
recorded during the long-run sessions of the satellite.

COSMOS rb: Telemetry and Command manager. To
achieve a wide range of signal dynamics, the test runner
functionality will be used with a set of scripts sending
commands to the satellite.

A couple of faults are injected during the tests, which
include having an open circuit or a loose connection on a
battery temperature sensor as shown in Fig. 2. However,
a large number of anomalies are required for reliable
results. Hence anomalies are injected artificially into the
dataset as described in the following sections.

Fig. 2. Battery temperature sensor faults injected during testing

3 CURRENTLY EMPLOYED FAULT DETECTION
METHODS

Understanding the current fault detection, isolation, and
recovery (FDIR) practices in satellites is key to develop-
ing this framework. Standard FDIR practices followed in
small satellites are described here. Generally small satel-
lites integrate a software module dedicated to failure
identification and recovery tasks. This functionality is
implemented by monitoring telemetry data from sensors
connected to the On-Board Computer (OBC) (or shared
by the subsystems connected), comparing sensor values
to predefined thresholds, and finally executing a recov-
ery action.

FDIR is implemented in different subsystems and de-
pending on the platform and the mission, and different
the corresponding operational variables are monitored.
Sample FDIR modules implemented on such platforms
include FDIR table (monitor voltages, currents, and tem-
peratures at different subsystems), FDIR ADCS (moni-
tors the functions of Attitude Determination and Control
System), FDIR EPS (checks power distribution unit func-
tionalities and evaluation of related failures), and others.
The proposed framework is expected to be particularly
suitable for the evaluation of dynamic and analog oper-
ational variables in these tables. The FDIR table module,
for example, evaluates the analog variables collected
from sensors directly connected to the onboard computer
and variables retrieved from reading subsystem status
telemetries that are published. The analog measures are
then compared with the limits predetermined according
to the variable, component, subsystem, and expected
characteristics.

Fault Detection:

Fault detection is achieved by comparing and classi-
fying the analog values measured using a set of thresh-
olds into five delineated regions described below and
illustrated in Fig. 3.

• MIN ERROR: sensor value unexpectedly too low;
• MIN WARNING: sensor value between the mini-

mum error state and the nominal state;
• NOMINAL STATE: sensor value as expected (be-

tween minimum and maximum warnings);
• MAX WARNING: sensor value between nominal

value and a value to high;
• MAX ERROR: sensor value unexpectedly too high.
Error and warning thresholds, shown in Table 1 perti-

nent to subsystems are determined by the manufacturers
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Fig. 3. Possible states for a measured analog variable deter-
mined by set thresholds

name min err min warn max warn max err
spa_temp -20◦C -10◦C 80◦C 90◦C
obc_temp -15◦C 0◦C 40◦C 55◦C
... ... ... ... ...
psh_itm 0A 0A 2.2A 3.1A

TABLE 1: Example FDIR table showing threshold limits for
sample variables

and accepted after extensive testing in different opera-
tional conditions. The operational limits (MIN ERROR,
MAX ERROR) are determined in these tests. Exceeding
those limits does not imply immediate failure of the com-
ponent however, their functionalities are not guaranteed.
Warning values (MIN WARNING and MAX WARNING)
are then determined based on the variable dynamics and
are chosen to be between 10 and 20% over or below the
maximum or the minimum nominal values, respectively.
Readings in a warning region do not compromise a
component’s functionality but raise a flag.

4 METHODOLOGY

The framework proposed here covers the process from
data ingestion and abstraction of a system, to digital
twin construction, feature extraction, model training, and
anomaly detection methods. Each of these steps are
discussed below.

4.1 Abstraction

The first step in this framework is to automate data
ingestion from any system/platform and generate an
abstracted digital twin using inter-parameter correlation
metrics. Correlations thus extracted between any two
system operational variables will indicate how well one
of them could be used to diagnose the other. This step
also provides a visualization of the abstracted system as
a layered correlation graph connecting inter-dependant
operational variables, in order to support fault explana-
tion and root cause identification analysis. This task also
includes identifying and selecting one or more ground
truth variable(s) based on system-wide correlation scores
and extracting suitable features from them to train a

series of machine learning regression models used in the
anomaly detection process.

Extracting Correlation Strengths
To accurately capture all system variable relationships

for constructing a digital twin, we utilize Dynamic Time
Warping(DTW) technique to evaluate a distance metric
between all variables under a series of conditions. DTW
is selected because a certain degree of latency between
physically dependent variables is expected in many
systems, and DTW accounts for this latency while still
accurately quantifying the correlation between variables.

To construct a correlation mapping of the system,
each of the n operational variables has a DTW distance
score calculated between all of it’s n−1 variables. These
scores are then min-max normalized to be in the range
[-1.0, 1.0]. Certain parameters, like voltage in a battery-
powered system, may have their correlations to other
variables obscured by a constant increase or decrease in
their values over time. To correct this, DTW correlation
scores are calculated for not only the original values, but
also linear and polynomial detrended versions as well.
Additionally, we also check for inverse relationships
that may exist, such as between current and voltage,
between all system variables. For each variable pairing
only the highest of these correlation metrics is kept. An
example mapping built using this technique describing
all correlations within a small satellite is shown in Figure
9.

Feature Extraction Our framework deploys n− 1 ma-
chine learning models to predict all operational variables
using a selected ground truth measurement as input. The
ground truth is selected based on it’s correlation to all
other variables in the system. In the case of the satellite,
battery current information is selected as our ground
truth variable, and prediction of the remaining variables
is performed based on these ground truth readings.

Each learning model deployed corresponds to one
operational variable, making run time efficiency a con-
sideration for real-time prediction. For this we utilize a
sliding time window that extracts a feature vector for
each reading of the ground truth parameter. That is, each
new reading of the ground truth results in a feature
vector, F = {f1, , f9}, characterizing the information
collected over the last Tnow − Tw readings. Each feature
vector contains ground truth information for the most
recent reading, maximum and minimum amplitudes,
amplitude locations within the window, most recent
peak and troughs, window average, impulse, and slope.
Each feature vector, Fi, corresponds to a target value Gm

i ,
and model Mi takes Fi as input to predict gmi .

F = {f1, , f9, } and G = {g1, , gn} (1)

For a given target variable gm, model Mm gives a
single prediction Ĝi

m from feature vector F i
m. During

normal operation, the predicted Ĝi
m should match its

observed reading collected from the system, i.e., Gi
m. To

check for anomalies, empirical readings Gn = {gnj
i} are
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compared to the model estimated values Ĝn = {ĝnj
i}. In

this unsupervised approach, our models are trained only
on non-anomalous operational data, and do not rely on
any pre-generated database of known fault signatures
or behaviors. Because of this, the types of anomalies
detectable by our framework are not restricted to known
anomalous patterns or known thresholds, but our frame-
work is instead capable of detecting a large range of un-
known anomalous behaviors that are within acceptable
ranges but may deviate from predicted norms.

4.2 Anomaly Detection

The second framework component is responsible for
detecting anomalies observed in operational variables.
This involves training of machine learning regression
models to perform a one-to-one mapping using extracted
ground truth features to predict other system operational
variables. The ML models predict expected nominal
behavior, which is then compared to actual observations.
Anomalies are then labeled based on deviations between
measured and predicted values. The optimization of
parameters that define when and what type of differ-
ences are classified as anomalies, in addition to the
quantification of the magnitude and duration of detected
anomalies, is also explored here. To demonstrate these
capabilities, different types of anomalies/fault models
are developed and injected in the available datasets.

For preliminary testing, we demonstrate the model
training, prediction, and anomaly detection processes
using a small dataset collected from a testbed platform.
This motorized propeller system is mounted to a test
bench, and collects metrics such as current, RPM, torque,
and thrust. In this scenario, the model uses battery
current features to be used as model inputs and the
node’s raw values (thrust, torque, etc.) as targets.

Training of Machine Learning Prediction Models
After testing different ML models, Gradient Boosting

[13] models were identified to have the most suitable all-
around performance in terms of both runtime efficiency
and prediction accuracy. Our framework automates the
training and handling of the n models to be used, begin-
ning with generating the correlation mapping, selecting
a ground truth variable, extracting feature vectors, and
training models on nominal behavior.

We have utilized the testbed data to demonstrate the
automated pipeline to generate ML models. Figure 4
shows the predicted and observed raw values with the
cumulative error for the testbed’s thrust values. It is
important to note here that we are using non-normalized
features such as window average, peak and trough
values of the ground truth node to predict the raw values
of the targets.

Anomaly Models
For testing, in order to evaluate detection methods a

variety of anomalies added to operational variables to
mimic real-world faults. Anomaly types are classified
as point, collective, and contextual [14] and are injected

individually into different operational variables. These
anomalies reflect situations where 1. only one sensor
picks up abnormal behavior experienced by a system,
2. the measured/transmitted sensor data differs from
true behavior, or 3. when components do not respond
to control inputs due to hardware or software failure. In
total, there are seven anomaly types injected, all with
randomized injection points, anomaly durations, and
intensities.

Noise: An array of randomly selected percentage mod-
ifiers, in the range of [-70%, 70%], is applied to a window
of data to simulate noise added to the signal. This is
shown in Fig. 5a.

Constant: Sets the measured data to a fixed value for
the anomalous window. The selected value may be either
the average value of non-anomalous data, a random
constant taken from the valid data range, or set to 0.
An example of one such anomaly is shown in Fig. 5b.

Value shift: A coefficient modifier applied to the orig-
inal data trace. This increases or decreases the data by
20%-80% while maintaining the shape of its original
behavior. A decrease shift is shown in Fig. 5c.

Point anomalies: A single anomalous point sur-
rounded by normal data. The value of the anomalous
point injected is a random value between 150% and
300% of the parameter’s average value over a previous
window. See Fig.5d. This could be representative of a
loose sensor connection.

Drift anomalies: A gradually increasing coefficient
modifier applied to the original data, shown in Fig. 5e
beginning at 0% and eventually increasing the data by
up to 80% its original value. This represents various
anomalies that have a gradual onset.

Detection Methodology
If a trained model gives a perfect prediction of its

target variable, then the residual between the two will be
zero, which is not realistic. However, it can be assumed
that the error rate between the model prediction and
measured value will be fairly consistent if averaged
over a period of time. Because our detection strategies
revolve around discrepancies between measured values
and model predictions we must quantify this devia-
tion, however, certain system variable pairs have an
inherent latency between their relationship, so methods
based on standard error measures would result in high
false positive counts. Instead, we base our detection on
dynamic time warping measures collected over non-
anomalous periods of time, effectively using this DTW
distance score as an error metric, and then examine
where subsequent periods fall along a distribution.

DTW-Distribution Detection
To quantify how the target predictions, Ĝ, deviate from
empirical readings, G, we first use a tumbling time
window to compute a dynamic time warping distance
score between the model prediction and measured read-
ing. The length of the tumbling time window used is
an adjustable parameter in our framework. By exam-
ining longer windows between model predictions and
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measured values, the effects of short deviations are
dampened, which can reduce false positives from short
periods of poor model predictions. A shorter window
size can capture specific anomaly types such as point
anomalies more effectively, but may fail to capture long
duration anomalies that are gradually onset. For final
deployment, a combination of both short and long du-
ration windows is suggested to capture a wider ranger
of fault types. In addition to the window size, the
radius considered in the DTW calculation may also
be configured. Setting the radius parameter to 1 will
effectively compute the Euclidean distance between the
two-time series, while higher values allow for greater
time warping.

Using the distance scores collected from this tumbling
time window, our detection strategy of identifying outly-
ing behavior is centered around the distribution curve of
non-anomalous DTW scores. As shown in Fig. 6, when
comparing the distributions of DTW scores collected
during nominal and anomalous data, the distribution
curve for data containing anomalies has a significantly
longer right tail. Based on this observation, it can be
assumed that if the DTW scores collected over a period
of time fall outside of the non-anomalous distribution,
then it is likely this period contains an anomaly.

To accurately quantify where a window score lies
along the distribution, DTW scores are collected during
a known non-anomalous period and over 100 different
distributions are fitted to the data. From this we are
able to determine a priority list of distributions that
most accurately captures the distribution curve across
all variables based on the sum of their squared error, as
shown in Fig. 7.

Detection under this method first begins by fitting
this list of distributions to DTW distance scores collected
over a known non-anomalous period of time to quantify
nominal behavior. Then, for subsequent windows exam-
ined each distance score is measured against the full
width at half the maximum peak value of the nominal
distribution curve. If the DTW distance over a period
of time exceeds a given distance from the distribution
peak, in units of this full width at half maximum
value(FWHM), it is considered too far from the nominal
distribution and thus abnormal. I.e., a collected DTW
score is considered to be an outlier of the nominal
distribution when abs(dtwscore − distributionpeak) >
c ∗ fwhm. The coefficient c used for this threshold is a
configurable parameter within the framework.

A warning counter is then increased based on the
distance between the DTW score of this abnormal
window and the nominal distribution peak, that is
the warning counter is incremented by (((dtwscore −
distributionpeak)threshold)fwhm). This approach en-
sures that farther outliers are given a greater weight
and are more quickly classified to be anomalous. Sim-
ilarly, if subsequent periods are within the nominal
distribution, this warning counter is decreased based
on how close to they are to the nominal distribution

Fig. 4. Cumulative error between model predicted and mea-
sured thrust values of the testbed.

(a) Injected Noise (b) Constant value anomaly

(c) Shift anomaly (d) Point anomaly

(e) Drift anomaly

Fig. 5. Example anomaly types injected into true data.

Fig. 6. Distributions of DTW window scores for anomalous
and non-anomalous data.
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Fig. 7. Most accurately tted distributions to DTW scores in
Torque.

peak, warnings = warnings− ((windowsize∗ threshold∗
2)+(03∗(FWHM(dtwscore−distributionpeak))). This
gives a decay to the warning counter and prevents it
from gradually accumulating and flagging false posi-
tives. Anomalies are then flagged when this warning
counter exceeds a warning threshold, set as a config-
urable percentage of the window size being considered.
This method also dynamically adapts itself to changes in
system behavior over time, such as slow gradual voltage
drops in battery-based systems, by refitting distributions
and updating nominal thresholds during extended peri-
ods of non-anomalous behavior.

The configuration of the parameters for this detection
method determine the types of anomalies that may be
detected, detection rate, number of false positives, and
detection latency. An extensive grid search has yielded
well-performing default values for the configuration,
and results are discussed in following section. Fig. 8
demonstrates the behavior of this detection method for
three separate anomalies(constant value, value shift, and
noise anomalies) injected into the testbed data, plotting
the DTW score of each window and the warning counter
behavior during the deviation between predicted and
measured values.

Fig. 8. Detection behavior for three anomalies. Anomaly
detection time is marked by vertical red lines.

5 RESULTS

In this section, we discuss the results generated by
deploying the framework and algorithms discussed in
the previous section on satellite data.

5.1 Abstraction Results

After ingesting the satellite datasets and identifying the
analog operational variables in the satellite dataset, heat
maps of DTW correlation strengths are generated. Figure
9 shows the correlation scores between all operational
variable pairs of the small satellite. The subsystem or
category of the operational variables is labeled in the fig-
ure as VTM/ITM (voltage and currents), OBC (onboard
computer), ADCS (attitude determination and control
system), PS (power system), and a Radio subsystem.
These scores have been generated after implementing
de-trending, inverse-checking, and data normalization
methods. Several dark blue blocks indicate strong cor-
relations between different operational variables. In Fig.
10, these scores are arranged in the descending order of
their correlation strengths with respect to battery current.
A bar chart at the top of the figure shows these values.
Using battery current as the ground truth parameter,
anomaly detection results are expected to be superior
for those with higher correlation strengths.

Fig. 9. Heatmap showing correlation scores using DTW tech-
nique

Figure 11 shows the top 20 operational variables that
are the most correlated with the battery current variable.
These include several temperature variables such as SPA
temperatures, SPA voltages, power measurements, and
ADCS torque commands.

5.2 ML Prediction Results

The operational variables with strong correlations to
battery current are selected for training ML models.
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Fig. 10. Heatmap showing DTW correlation scores and oper-
ational variables arranged according to descending order of
correlation strengths with battery current

Fig. 11. Top 20 operational variables correlated to battery
current in satellite data

Features are then extracted from the battery current
readings, and separate Gradient Boosting ML models are
trained for each operational variable to be monitored.
ML predictions for two sample operational variables
(SPA temperature and power output) are shown in
Figures 12 and 13. The prediction accuracy is highly
dependent on the correlation strength and the amount
of training data available which covers the relationship
between the ground truth and the selected variable.

Figure 14 shows the Mean Average Percentage Error
(MAPE) values of 60 ML models for different operational
variables selected.

5.3 Anomaly Detection Results

After the ML models are trained, anomalies are ran-
domly injected into the different operational variables.
DTW distribution-based methodology was applied to
detect the injected anomalies with a nominal amount

Fig. 12. ML prediction of satellite SPA temperature variable
compared to observed behavior

Fig. 13. ML prediction of satellite power output variable
compared to observed behavior

of tuning of the detection parameters. The true positive
and false positive detection rates on all 60 operational
variables selected for monitoring are shown in Fig. 15.
The results show that the operational variables that had
the largest MAPE values, such as ADCS body rate and
ADCS torque commands, also showed poor detection
performances. In addition, a few variables with low
MAPE values also showed poor detection performance.
Further analysis with the help of a subject matter expert
may be required to understand the underlying reasons.

To downselect the operational variables for monitor-
ing, a detection rate threshold could be utilized. Op-
timally selecting the variables with low false positive
rates and high detection rates would be beneficial for
satellite health monitoring operations. This will reduce
the burden on the operators to unnecessarily analyze
false positive detections while capturing most anoma-
lous behaviors. Figure 16 shows the operational variables
with a detection rate of greater than 60%. In this case,
the average detection rate is found to be 81.8% with an
average false positive rate of only 2.0%.

In Fig. 17, only the operational variables with anomaly
detection rates greater than 80% are shown. In this case,
the average anomaly detection rate is 89.1% and the
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Fig. 14. Mean average percentage errors of ML models predict-
ing different satellite operational variables

Fig. 15. Anomaly detection results on all selected satellite
operational variables.

Fig. 16. Anomaly detection results on satellite operational
variables with greater than 60% detection rate.

average false positive rate is found to be only 0.9% for
the number of anomalies injected and passed through
detection.

Fig. 17. Anomaly detection results on satellite operational
variables with greater than 80% detection rate.

Figure 18 shows the number of operational variables
that would be monitored for different detection rate
cutoffs. The figure shows detection rate cutoffs from 50%
to 100% and the number of variables changes from 38
variables at 50% to 25 variables at an 80% cutoff.

6 CONCLUSION

In this paper, a reusable and fully data-driven frame-
work for anomaly detection in small satellites is pro-
posed. By leveraging correlations between operational
variables, feature extraction processes, and machine

Fig. 18. Number of satellite operational variables that can be
monitored for different detection rate cutoff scenarios

learning techniques, this framework enables the rapid
detection and isolation of anomalous behaviors. The
framework’s platform-agnostic nature allows for cost-
efficient implementation on most small satellite plat-
forms. It can be deployed either onboard a vehicle to
support autonomy or at a ground station to improve
operational efficiency and mission success rates.

Through implementation and testing on satellite test
datasets, we have demonstrated the effectiveness of our
framework. Correlation scores were generated using Dy-
namic Time Warping (DTW) technique which revealed
strong relationships between battery current and various
operational variables. ML models trained to learn these
relationships achieved low prediction errors for different
monitored variables and contributed to reliable detection
of injected anomalies. The anomaly detection results
showed average detection rates of nearly 90% and an
average false positive rate of less than 1% for 25 opera-
tional variables which showed strong correlation with
battery current. Future work includes further refining
the framework, expanding the datasets for evaluation,
and collaborating with industry partners to deploy and
validate the framework in operational small satellite
missions.
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