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Abstract

Fatigue testing is critical in order to establish the service life of load-bearing

components and structures. The extensive time associated with full fatigue

spectrum testing can lead to prohibitive costs. A significant need exists for a

fatigue load spectrum editing methodology, based on the mechanics of fatigue,

that produces load spectra that can replicate service damage in laboratory test-

ing and can lead to compressed testing times and reduced costs. In this work, a

wavelet genetic (WAVEGEN) algorithm is developed to edit fatigue loading

spectra using wavelet analysis to greatly reduce the length of a spectrum while

retaining the same damage accumulation characteristics. In addition, an opti-

mization protocol using a genetic algorithm is included within this process to

automatically select the best wavelet editing parameters. The algorithm is

designed to identify the most suitable wavelet type, filter, and level to opti-

mally edit a given fatigue spectrum and ensure equivalence between edited

and unedited spectra from a damage perspective. The algorithm was applied to

two well-known aircraft fatigue spectra: Fighter Aircraft Loading Standard for

Fatigue evaluation (FALSTAFF) and Transport Wing Standard (TWIST). The

proposed approach has demonstrated that both spectra can be compressed sig-

nificantly even while ensuring equivalence from a damage perspective.
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1 | INTRODUCTION

Aerospace components and structures are subject to
fatigue loading throughout their service life. Such loads
can cause progressive and permanent damage accumula-
tion in the microstructure of materials. This damage
accumulation can result in the formation of incipient
cracks that eventually leads to critical crack growth and
total failure of the structure. Fatigue testing therefore
becomes important in order to establish the service life of
critical load-bearing components and structures.1

Most fatigue tests are conducted in the laboratory
either on lab-scale or full-scale structures. Economic con-
siderations dictate that a significant number of these tests
are performed with a simplified, equivalent version of the
actual service load spectrum. Equivalent fatigue loads are
determined using established models (stress-life, strain-
life, crack-growth rate, etc.2), empirical magnification fac-
tors, and many assumptions. While this approach has
served its purpose, accurate service life determination of
critical load bearing structures from laboratory testing
requires a faithful reproduction of service load spectra
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and even full-scale testing of the structure under
consideration.

The load-time histories associated with many practi-
cal service fatigue loads possess characteristics that
change as a function of time. If these are to be faithfully
captured in the laboratory, the extensive time associated
with fatigue testing can lead to prohibitive costs. Fatigue
load spectrum editing is therefore imperative in order to
reduce the time and costs. Accelerated testing in the
laboratory has been practiced for many years. Traditional
methods have included increasing the frequency of test-
ing loads, increasing load amplitudes, and the removal of
low amplitude load cycles that are perceived to be irrele-
vant.3 These methods are, in many cases, ad hoc in
nature and quite often fail to replicate accurately the
damage that is seen in real structures exposed to real ser-
vice loads. A need exists for a fatigue load spectrum
editing methodology, based on the mechanics of fatigue,
that produces load spectra that can replicate service dam-
age in laboratory testing and can also lead to compressed
testing times and reduced testing costs.

In order to compress fatigue testing times, the fatigue
load time history has to be analyzed to identify those por-
tions that cause significant fatigue damage and eliminate
sections that are insignificant in nature. Signal processing
methods can play a crucial role in this effort. For instance,
Fourier analysis can be used to decompose the signal into
its frequency spectrum and identify frequencies with low
amplitudes. However, this does little to enable signal time
compression. Service fatigue load time histories are non-
stationary in nature; signal characteristics change with
time and this fact can be exploited. Wavelet transforms
(WTs) and short-time Fourier transforms (STFTs) can be
used to analyze nonstationary signals to identify those
portions of the time history that cause significant fatigue
damage. These pertinent portions can be extracted out of
the overall time history and concatenated to produce a
condensed or compressed history that can be used to
accelerate laboratory fatigue testing.

Practically, for accelerating fatigue tests and reducing
operating costs, various signal editing methods are devel-
oped and reported as time-domain method, S-transform,
STFT, continuous wavelet transform (CWT), and discrete-
wavelet transform (DWT). Time-domain method was first
introduced by Conle and Topper.4,5 Here, the low
amplitude cycles below a threshold level are removed to
determine the damage caused by each level of strain cycles
in a variable amplitude loading history. The damage reduc-
tion is then compared with original fatigue test results. The
time-domain model is actually the most used approach for
spectrum editing process as reported in revious studies.6–13

However, the time-domain method is not precise in
predicting the fatigue damage. This is due to the lack of

frequency information in the time domain as low-
frequency segments are necessary to calculate the fatigue
damage. Thus, to engage the frequency domain, the time-
frequency approach was applied by Abdullah et al14

using the S-transform method and by Abdullah et al15

using the STFT. Aside from the advantage of considering
the frequency domain, the drawback of time-frequency
approach is the fixed window size in both time and fre-
quency domains. Since sudden changes happen in high-
frequency parts in fatigue signals, the smaller window
size in the frequency domain is essential. This indicates
that the WT analysis is suitable due to the capability of
defining smaller window size at high-frequency parts.

Wavelet analysis offers a very promising avenue for
achieving accelerated fatigue testing. Some preliminary
efforts, particularly in automotive16 and wind turbine
fatigue testing,17 have demonstrated the opportunities
that exist with fatigue signal compression. However, opti-
mization strategies have not been adopted in a meaning-
ful manner to achieve maximum signal compression
using wavelet analysis. Significant opportunities exist for
extending these ideas to aerospace fatigue testing, partic-
ularly in multiaxial loading configurations.18,19 A system-
atic wavelet analysis-based approach is possible for
aerospace fatigue spectrum editing that preserves fatigue
damage, minimizes testing times and costs, accounts for
load interaction effects, and minimizes clipping.

In Putra et al,20,21 the CWT is applied where the
strain signals measured at automotive suspension compo-
nents were extracted based on the Morlet wavelet to
identify damaging segments. Also the DWT is used in
Abdullah et al22 and Oh23 to compress the fatigue signal
while retaining the fatigue damage of the edited signal
compared to the original one. An issue associated with
both continuous and discrete wavelet approaches in these
works was that the lengths of edited signals are not con-
sistent and are dependent on the original behavior of the
signals. This issue is resolved in our work by employing
an appropriate optimization strategy alongside with a
robust editing process based on the DWT which will be
discussed in detail.

The objective of this study is to develop an analytical
approach grounded in fatigue theory that compresses a
fatigue test spectrum using wavelet analysis. The editing
process is designed to retain equivalent damage accumu-
lation and results in edited spectra that can provide
significant cost and time savings associated with fatigue
testing. The fast wavelet transform (FWT) algorithm,
fatigue spectrum editing, and signal editing process
optimization are described in Section 2. In Section 3, the
results generated by the proposed wavelet genetic
(WAVEGEN) algorithm are presented and discussed.
Concluding remarks are presented in Section 4.
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2 | METHODOLOGY

The primary goal of this work is to develop a signal
processing technique to achieve significant reductions in
the time span of edited variable-amplitude fatigue load
spectra while ensuring that damage produced by the
edited and unedited spectra is substantially equivalent.

At first, an appropriate fatigue spectrum with a broad
range of load levels, frequencies, and overloads is required
for analysis. There are many candidate spectra including
Fighter Aircraft Loading Standard for Fatigue evaluation
(FALSTAFF),24 Transport Wing Standard (TWIST),25

HELIX, and FELIX.26 The FALSTAFF spectrum is per-
haps the oldest existing standardized spectrum available
for fighter aircraft wing loading. The complete FALSTAFF
load history is based on two hundred flights. The recorded
FALSTAFF data are available in the form of successive
peaks and troughs expressed as a complete sequence of
integers. The data are also available in the form of joint
probability distribution matrices and exceedance curve
representations. Rainflow cycle counting can also be
applied for reconstructing the random load history by
placing the individual cycles on the rising half or falling
half of the major cycle. In fact, the rainflow cycle counting
data is sufficient for calculating the accumulated damage.
However, for wavelet analysis and spectrum editing, the
original load sequence is required. In addition, the com-
plete load history of TWIST spectrum based on 4,000
flights (402,665 cycles) is also available in the form of suc-
cessive peaks and troughs. The data are normalized
between the values: 0.6 and 2.6. Note that the signal char-
acteristics of FALSTAFF and TWIST spectra differ.

Our aim is to remove those parts of the load spectrum
that contribute little to the damage. Damage can be esti-
mated using two methods (stress-life and crack growth
rate) for both original and edited signals to study the
effect of signal editing on the total damage. In the stress-
life method, the S-N curve, a suitable damage accumula-
tion rule, and a cycle-counting method are employed to
model the fatigue damage. In the fatigue crack growth
method, suitable crack growth models can be used to
determine the effect of a load spectrum on a pre-existing
noncritical crack and calculate the number of cycles of
the spectrum that cause the crack to grow to a critical
size. For signal editing of the FALSTAFF and TWIST
load histories, we use the WT method outlined in the
next section.

2.1 | Fast wavelet transform

As is well known, Fourier theory provides the ability to
express a time-varying signal as a sum of sines and

cosines and thus enables us to identify the frequencies
inherent in the signal. With transient signals, however,
Fourier expansion lacks time information, and there is
no way to tell when the frequencies are present and how
the frequency components change with time.

The above problem can be overcome by a time-
windowed STFT which has a fixed time-frequency win-
dow. However, STFT is inaccurate to analyze signals hav-
ing relatively wide bandwidths that change rapidly with
time. The WT (wavelet analysis) overcomes this issue by
utilizing a fully scalable modulated window. The window
is shifted along the signal at which point the spectrum is
calculated. This process is repeated with a varying win-
dow for every new cycle. The process hence results in a
collection of time-frequency representations of the signal,
all with different resolutions; WT is hence a multi-
resolution analysis.

The WT is categorized into continuous and discrete
approaches.27 The CWT13,28–31 generally evaluates the
signal with the scaled and translated version of a basic
mother wavelet. This method is a highly redundant trans-
form that discretizes the scales very smoothly so that the
finer sampling of scales results in a highly accurate analy-
sis of the signal. The advantages of this approach are pre-
cision localization of the transient parts and better
oscillatory behavior characterization of the signal, which
leads to a detailed time-frequency signal analysis. On the
other hand, the DWT provides a sparse and discrete rep-
resentation of the signal. That is, the important features
of the signal are captured by DWT coefficients which
result in compressing the signal while preserving the
high-quality approximation form of the signal. In this
case, the scale parameter is controlled by the decomposi-
tion level, and the translation parameter is proportional
to the scale. The major difference between the CWT and
DWT is how the scale parameter is discretized. The strict
discretization of the scale and translation parameters in
discrete form ensures that DWT is an orthonormal trans-
form where the discrete-large coefficients are captured
and the discrete-small coefficients as noises are identified
and detached separately. Note that the term FWT is used
to describe DWT when a filter is applied before the wave-
let decomposition.32

It is for the reasons enunciated above that we choose
DWT rather than CWT for fatigue spectrum editing in
this work. It should be noted that the primary objective
of the research is to identify the parts of the fatigue spec-
trum with negligible effect on damage calculation; in
DWT, these correspond to the high-pass coefficients.
Hence, retaining the essential parts of the signal that
contribute the most to fatigue damage would be accom-
plished by retaining the low-pass coefficients. The one-
dimensional wavelet coefficient (C) calculation based on
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the scaling (s) and translating (μ) parameters as well as
the wavelet function (ψ) is shown in Equation (1). The
dyadic-scale parameter (s) is related to the specified
decomposition level j as (s = 2j) and to the resolution as
(1/s). This means with increasing the number of levels,
the scale increases, and the resolution of the final edited
signal decreases. The smaller the resolution, the more the
high-frequency parts, and consequently, greater lengths
of the original signal are dropped.

Cðs,μÞ¼ ðR f ðtÞ
1ffiffi
s

p t�μ

s

� �
dt , μ¼ k2 j , ð j,kÞ�Z2

� � ð1Þ

Figure 1 depicts the one-dimensional wavelet decom-
position structure of a typical signal. At the first level,
two sets of coefficients as approximation and detail coeffi-
cients are generated. These vectors are obtained by
convolving the signal with the low-pass filter for approxi-
mation and the high-pass filter for detail. In the next
level, the approximation coefficient is decomposed with
the same algorithm and lower resolution. These scaling
wavelet filters return the low-pass and high-pass filters as
quadrature mirror filters associated with orthogonal or
biorthogonal wavelet families. The red line shows the
path commenced from the original signal to the edited
signal at each decomposition level. In practice, the ana-
lyzing mother wavelet needs to be chosen from the fol-
lowing wavelet families: Daubechies, Coiflets, Symlets,
Discrete Meyer, Biorthogonal, and Reverse Biorthogonal.

Parenthetically, it should be noted that there is no
universally accepted method for choosing the mother
wavelet function. In general, mother wavelets are charac-
terized by properties such as orthogonality, compact
support, symmetry, and vanishing moment which are
considered to make an “optimal” choice33 and to seek to
achieve a level of similarity between the mother wavelet
and the signal of interest. Qualitative approaches using
visual inspection are the most popular; for some

applications, quantitative approaches have been proposed
such as minimum descriptor length34 and Shannon
entropy measures.35 In the present work, the appropriate
wavelet type is chosen through an optimization process
as will be outlined later.

Discrete wavelet analysis essentially performs signal
decomposition into a hierarchical set of approximation
and detail coefficients. In this work, the wavelet decom-
position denotes a multilevel one-dimensional wavelet
analysis at a specified level where the signal is
decomposed to low-frequency and high-frequency parts
along with a downsampling process to avoid winding up
with double data as the original signal. The term one-
dimensional refers to the fact that a signal is investigated
here rather than, for instance, an image, which would
require a two-dimensional analysis.

Further decomposition levels lead to breaking down
of the signal into lower resolution components as shown
in Figure 2. For illustration, the original signal consid-
ered here is a small portion of the FALSTAFF spectrum
with 1,000 cycles and is decomposed to three levels by
DWT. At the first decomposition level, the WT identifies
the low-frequency parts in 50% of the length of the origi-
nal signal. This becomes then the signal input for subse-
quent decomposition at the next level. Further levels
drop more high-frequency parts, and so on. In the second
level, the edited signal is shortened to 25%, and in the
third level, to around 12.5%. As can be seen, the edited
signals keep the trend of the original signal well and cap-
ture significant peaks and troughs of the signal which are
crucially important for the calculation of the total dam-
age. It is important to note that the suitable number of
levels depends on the nature of the signal and the maxi-
mum decomposition level is determined by the signal
length and the type of mother wavelet applied.

Figure 3 shows the comparison between an original
signal which is a typical 1,000 cycles of the FALSTAFF
spectrum and the edited signal generated by a WT at the

FIGURE 1 One-dimensional multilevel wavelet decomposition of a signal [Colour figure can be viewed at wileyonlinelibrary.com]
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second level of decomposition. In this case, the Reverse
Biorthogonal mother wavelet in the order of 1.3 is used.
With this choice of the mother wavelet type and the
decomposition level, and given the nature of the original
signal, the low-frequency parts of the signal get identified
and are shown as the red line in Figure 3. It is worth not-
ing that the term “signal shortening” refers to the reduc-
tion of the number of cycles in the edited signal. As can
be seen in Figure 3, the compressed signal in the second
level of decomposition is 25% of the original signal.

2.2 | Fatigue spectrum editing

The basic fatigue behavior of metals and alloys as
described by the S-N curve is commonly determined by
constant amplitude, zero-mean, loading, and testing in
the laboratory. However, most structures, especially aero-
space structures, experience variable amplitude loading
with nonzero mean stresses, when in service. Fatigue life
of structures is strongly dependent on loading sequences
and interactions, as well as stress amplitudes. Hence,

FIGURE 2 Original vs. edited signals at three decomposition levels for a portion (1,000 cycles) of the FALSTAFF spectrum [Colour

figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Comparing original signal vs. compressed edited signal for a portion (1,000 cycles) of the FALSTAFF spectrum; the edited

signal is based on the Reverse Biorthogonal wavelet [Colour figure can be viewed at wileyonlinelibrary.com]
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real-life variable amplitude fatigue load spectra are
required for multiple purposes including: (a) to test
small-scale or full-scale structures in the laboratory and
(b) to numerically evaluate the fatigue life of test mate-
rials and structures using well-established analytical
methods such as stress life and strain life. Many stan-
dardized fatigue load spectra have been developed and
adopted for diverse applications. There are three well-
established approaches to estimate the fatigue life of com-
ponents and structures that are exposed to variable
amplitude fatigue load spectra: stress-life, strain-life, and
fatigue crack growth modeling. Both the stress-life and
strain-life methods are used to predict life until the for-
mation or nucleation of a crack. Stress life is frequently
used for high-cycle fatigue situations, while strain life is
preferred in low-cycle fatigue situations where plastic
deformation is experienced in regions of stress concentra-
tion undergoing fatigue loading. Fatigue crack-growth
life estimations are driven by a fail-safe design paradigm
in which inspection periods are predetermined. In this
approach, a nucleated crack is assumed to grow until it
reaches a critical length that causes complete failure.

In stress-life modeling, first, the S-N curve obtained
from constant stress amplitude, zero mean-stress, and
cyclic fatigue load tests of a typical material are identi-
fied. Then, an appropriate model for non-zero mean
stress calculation (such as Modified-Goodman, Gerber,
Soderberg, etc.) is applied. In addition, a cycle counting
method that relates a variable amplitude service load his-
tory to constant amplitude laboratory test results is used.
The total damage is then determined by cumulative dam-
age of the cycles. The S-N curves for most aerospace
alloys in service are well established and available in the
public domain. To account for nonzero mean stress
effects in the fatigue test spectrum and the cycle counting
method, the Modified-Goodman approach and the
rainflow method are used here, respectively. In the
stress-life approach, the damage is defined as the fraction
of useful life of a component or structure that is
consumed by the occurrence of a single event such as a
single cycle of a cyclically varying applied load. Cumula-
tive damage, D, is calculated by breaking up the applied
variable amplitude fatigue load history into a sequence of
events and combining the damage associated with each
event. In principle, the cumulative damage D can be eval-
uated using linear and nonlinear models. The Palmgren–
Miner rule is the most often used linear model which is
used here. Although this method makes many assump-
tions that are violated, its simplicity is appealing and
effective.

The stress-life methodology described above is applied
to calculate the cumulative damage produced in a stan-
dard aerospace alloy that is exposed to the unedited test

spectrum as well as the edited test spectrum. If the
“unedited” and the “edited” cumulative damage metrics
are within 5% of each other, the two test spectra will be
considered to be equivalent. This is captured by the dam-
age error percentage metric in Equation (2); if the value
of this metric is less than 5%, then the edited and uned-
ited fatigue spectra are considered equivalent from a
damage perspective. The stress-life approach neglects
sequence effects in loading and their impact on damage.

DEP¼ DO�DE

DO

����
�����100 ð2Þ

where DO is the damage caused by the entire original
spectrum and DE is the damage caused by the edited
spectrum. DEP is the damage error percent metric.

The application of wavelet based editing of fatigue
spectra to generate equivalent edited spectra is explored
next. The FALSTAFF spectrum is first considered for
study. For our analysis, we chose the material, Al
6061-T6. This alloy has an ultimate strength of 320 MPa
and a fatigue strength of 80 MPa for 1.0e7 cycles of
reversed stress. Fatigue test spectra such as FALSTAFF
and TWIST are typically available as a sequence of nor-
malized, scaled numbers. To convert such spectra into a
typical stress spectrum, a suitable stress scaling factor has
to be chosen. For the purposes of our analysis, we chose
a stress scaling factor that ensured a maximum stress of
90 MPa for the FALSTAFF spectrum, in order to ensure
reasonable damage and life calculations for the chosen
material of Al 6061-T6.

Instead of using the entire FALSTAFF spectrum, a
portion of the spectrum is extracted and then subjected to
our editing methodology for illustrative purposes. The
extract from the FALSTAFF spectrum considered for
study is 1,000 cycles (10,000–11,000) long. Tables 1 and 2
illustrate the damage error percentage values for the
spectrum extract using various filter and wavelet types at
two levels which result in the spectrum extract being
edited to 50% and 25% of the original length, respectively.
In these tables, the first column displays the various filter
types; the first row depicts the varied wavelet types. The
cell entries in bold indicate the desired damage error per-
centage values beneath 5%.

Figure 4 displays the comparison of the original,
edited and compressed-edited signals for an extracted
case from Table 2 which is for 1,000 cycles (10,000–
11,000) of the FALSTAFF spectrum, with filter type as
“bior3.9” and Wavelet type as “rbio1.3” at the second
decomposition level. This combination results in a signal
shortening of 75% with the damage error percentage
being 1.3%. In the figure, the blue line is the original
spectrum, the red line is the edited spectrum, and the
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black line is the compressed-edited spectrum. The latter
compares the edited spectrum to the original one demon-
strating how much truncation occurs after the signal
reduction. DEP denotes the damage error percentage
value, the decomposition level is designated as L, the fil-
ter type as F, and the wavelet type as W.

The main outcome of the effort reflected in Tables 1
and 2 is to obtain the desired solutions that are based on
different filter types, wavelet types, and decomposition
levels. A huge amount of effort is required to check all
possible solutions to find out which combinations lead to
acceptable results. An acceptable result is defined as one
where the edited signal is shorter than the unedited
signal, but the damage caused by both is equivalent.
Equivalency of damage is established by ensuring that
the damage percent difference between the edited and
unedited spectra is less than 5%. Instituting an automated
optimization procedure to identify the most suitable com-
pressed signal is imperative in order to reduce the effort
involved. This was the motivating reason to improve the
spectrum editing process by implementing an appropriate
optimization method which will be discussed next.

2.3 | Signal editing process optimization
with GA

As demonstrated earlier, the various design parameter
combinations present nondeterministic and disordered
solutions depending on the nature of the original signal
without a clearly identifiable trend. This inability to eas-
ily identify algorithmic parameters suggests that we seek
an automated algorithm that implements optimization.
This strategy would enable the editing process to lead to
the desired solution in a significantly shorter time than
manually checking all potential solutions. Among a

variety of optimization techniques, the genetic algorithm
(GA)36 is a proper choice to consider based on the unique
problem characteristics. Note, in addition, that the
editing process includes discrete variables (such as filter
types, wavelet types and decomposition levels), and our
past experience37–41 has shown that GA is a robust opti-
mization tool to resolve exactly these kinds of integer
optimization problems.

A very brief overview of the GA is provided here. The
GA is first constructed by its biological criterion, then
mathematically formulated and implemented in
MATLAB. At first, the GA creates a random initial popu-
lation, and then it generates a sequence of new
populations. At each step, the algorithm uses individuals
in the current generation to create the next population.
In order to create the new population, the GA first scores
each member of the current population by computing its
fitness value that is called raw fitness score. Then, the
GA scales the raw fitness scores to convert them into a
more usable range of values which are called expectation
values. Next, it selects members called parents based on
their expectation. Some of the individuals in the current
population that have lower fitness are chosen as elites,
which are passed to the next population. Afterward, it
produces children from the parents by making random
changes to a single parent (mutation) or by combining
the vector entries of a pair of parents (crossover). Then, it
replaces the current population with the children to form
the next generation.42

The fitness function or the objective function of the
optimization problem is the target function to be mini-
mized. An individual is a vector of design variables that
is applied to the fitness function, and the value of fitness
function for an individual is its score. A population is an
array of individuals where the same individual can
appear more than once in the population. At each

FIGURE 4 Signal comparison for 1,000 cycles (10,000–11,000) with DEP: 1.3, L: 2, F: bior3.9, W: rbio1.3 [Colour figure can be viewed at

wileyonlinelibrary.com]
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iteration, the GA performs a series of computations on
the current population to produce a new population.
Each successive population is called a new generation.
The fitness value of an individual is the value of the fit-
ness function for that individual. Because the algorithm
finds the minimum of the fitness function, the best fit-
ness value for a population is the smallest fitness value
for any individual in the population. The algorithm ends
when one or more of the stopping criteria such as the
number of generations, fitness limit, function tolerance,
and constraint tolerance are met.42

For our implementation of GA on the fatigue spec-
trum editing process,

• the objective function is the length of the edited signal
(which needs to be minimized), or equivalently, the
decomposition level, which needs to be maximized;

• the constraint that we specify here is that the differ-
ence (or error) between the damage due to the original
and that due to edited signals should be less than 5%;

• the design variables for our process are filter types,
wavelet types, and decomposition levels.

3 | RESULTS AND DISCUSSION

The automation and optimization of the wavelet-based
signal editing process with the application of a GA are
applied to the FALSTAFF and TWIST loading spectra to
demonstrate the algorithm's capabilities. This wavelet-
based signal editing process coupled with a GA optimiza-
tion scheme is labeled WAVEGEN.

The FALSTAFF and TWIST loading spectra contain
approximately 18,000 and 400,000 cycles, respectively.
The WAVEGEN algorithm automatically optimizes vari-
ous types of filters and wavelets as well as different

decomposition levels. The maximum decomposition level
is set to 4, which means the signal reduction is limited to
a maximum of 93.75%.

The WAVEGEN algorithm is first applied to the com-
plete FALSTAFF spectrum. Figure 5 shows the compari-
son between original and edited FALSTAFF spectrum
(original has 18,000 cycles) with damage error difference
of 2.25% and signal reduction of 87.5%. These optimized
values are generated by WAVEGEN with filter type as
“bior4.4” and Wavelet type as “rbio3.3” at the third
decomposition level.

Figure 6 shows the comparison between original and
edited TWIST spectrum (original has 400,000 cycles)
with damage error difference of 4.23% and signal reduc-
tion of 75%. The edited spectrum is the optimized edited
spectrum generated by WAVEGEN with filter type as
“bior3.9” and wavelet type as “rbio3.7” at the second
decomposition level.

For the spectra considered in Figures 5 and 6, since
the real test spectra have generally a large length and sto-
chastic transient terms, the editing performed by
WAVEGEN has limitations that can be improved upon
by performing the editing in blocks. So this limitation of
single spectrum editing is the motivation to develop
the Block-WAVEGEN algorithm which will be
discussed next.

3.1 | Block-GA wavelet editing

The proposed WAVEGEN algorithm is extended to dis-
cretize the original spectrum into several blocks
according to the signal length and apply the editing pro-
cess coupled with the GA for each block. In this case, the
best wavelet optimization design parameters that match
with each specific block are selected rather than the same

FIGURE 5 Comparison of original and edited FALSTAFF spectrum with 87.5% signal reduction [Colour figure can be viewed at

wileyonlinelibrary.com]
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ones for the whole spectrum. This innovation makes the
spectrum editing process very effective and practical.

Further, since each block with its own specific intrin-
sic behavior could attain a specific length reduction based
on the decomposition level, with the maximum decom-
position level being 4, the overall reduction would be
within the range 50%–93.75%. The application of our new
Block-WAVEGEN approach is shown next as the results
of editing the FALSTAFF and TWIST spectra.

3.2 | Analysis of FALSTAFF spectrum

A detailed analysis is presented next of the editing of the
FALSTAFF spectrum using wavelet transformation and
GA optimization for various block sizes. A wide range of
block sizes are considered ranging from the full size of
18,000 to a block size of 1,500 cycles. Tables 3–5 illus-
trate the optimized editing process results generated by
GA for various block size selections to investigate the
effect of block size on the final signal reduction and dam-
age difference percentages between the original and
edited FALSTAFF spectrum.

Table 3 shows the results obtained by the use of three
blocks of about 6,000 cycles each, leading to a signal
reduction of 90% while the damage difference is still
under 5%. As can be seen, the optimization process

returns different filter and wavelet types as well as
decomposition levels for the blocks.

The best signal reduction results are achieved with
block size extracts of 4,500 and 3,000 cycles. Table 4 pro-
vides the results for a block size of 3,000 cycles. In this
case all blocks attain the assumed maximum signal
reduction value of 93.75% while the damage difference
percentages of all blocks are under 5% as specified. It is
not intuitively clear why this situation occurs for this spe-
cific block size, but it is clear that the signal characteristic
plays an important role to determine the appropriate
filter and wavelet types for any given block.

In Table 5, a block size of 1,500 cycles is considered
leading to 12 blocks in the whole FALSTAFF spectrum.
The GA was able to find the maximum signal reduction
for each block where the damage difference is less than
5% and the averaged signal reduction and damage differ-
ence percentages for the entire spectrum are 88% and
2.3%, respectively. This indicates that the signal reduction
range is between 75% and 93.75%. It could also be rem-
arked that the variety of wavelet types (as Daubechies,
Coiflets, Symlets, and Reverse Biorthogonal) that emerge
as the optimal signal editing tools are because of the vari-
ations in the FALSTAFF spectrum.

Figure 7 compares the signal reduction and damage
difference percentages for a range of block sizes which are
carried out on the FALSTAFF spectrum and generated by

FIGURE 6 Comparison of original and edited TWIST spectrum with 75% signal reduction [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 3 Block-WAVEGEN results for FALSTAFF spectrum for block size of 6,000 cycles

Block No. Cycles Filter Wavelet Decomposition Signal red (%) Damage diff (%)

1 6,000 bior3.3 rbio6.8 3 87.5 1.35

2 6,000 bior3.9 rbio6.8 4 93.75 4.56

3 5,983 bior3.9 db2 3 87.5 4.19

— 17,983 — — Averaged —> 89.6 3.37
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TABLE 5 Block-WAVEGEN results for FALSTAFF spectrum for block size of 1,500 cycles

Block No. Cycles Filter Wavelet Decomposition Signal red (%) Damage diff (%)

1 1,500 bior3.3 sym7 3 87.5 3.35

2 1,500 bior3.1 sym6 4 93.75 4.58

3 1,500 bior3.9 rbio2.6 4 93.75 4.28

4 1,500 bior3.9 rbio2.6 4 93.75 1.05

5 1,500 bior1.5 rbio3.3 4 93.75 0.57

6 1,500 bior2.2 db2 2 75.0 1.34

7 1,500 bior3.7 coif1 3 87.5 1.26

8 1,500 bior3.1 coif3 4 93.75 4.23

9 1,500 bior3.5 rbio2.6 4 93.75 0.68

10 1,500 bior3.3 rbio3.9 4 93.75 1.56

11 1,500 bior4.4 rbio2.6 2 75.0 2.24

12 1,483 bior4.4 rbio2.6 2 75.0 2.07

— 17,983 — — Averaged —> 88.0 2.27

FIGURE 7 Signal reduction and damage difference percentages for various block sizes of FALSTAFF spectrum [Colour figure can be

viewed at wileyonlinelibrary.com]

TABLE 4 Block-WAVEGEN results for FALSTAFF spectrum for block size of 3,000 cycles

Block No. Cycles Filter Wavelet Decomposition Signal red (%) Damage diff (%)

1 3,000 bior3.7 rbio3.5 4 93.75 2.97

2 3,000 bior3.9 rbio2.6 4 93.75 4.98

3 3,000 bior3.1 dmey 4 93.75 0.81

4 3,000 bior3.1 db10 4 93.75 3.64

5 3,000 bior3.1 sym7 4 93.75 4.46

6 2,983 bior1.5 rbio2.2 4 93.75 3.89

— 17,983 — — Averaged —> 93.75 3.46
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our block-based Wavelet-Genetic Algorithm Editing
(B-WAVEGEN) approach. As can be seen, the damage dif-
ference percentage for each block size selection is under
5% as expected, but it cannot be implied that lower block
size leads to an increase in the signal reduction.

3.3 | Analysis of TWIST spectrum

To check the capability and feasibility of the proposed
B-WAVEGEN algorithm to handle other substantial
fatigue spectrum signals, the B-WAVEGEN approach is
also carried out for the TWIST spectrum as demonstrated
in Tables 6–8. The considered block sizes are 200,000,
100,000, and 50,000 cycles.

Table 6 shows the results of the editing process
obtained by splitting the TWIST spectrum into two equal
blocks of 200,000 cycles each. The signal reduction and
damage difference percentages are at 81.25% and 1.92%,
respectively.

Further assessment is done by splitting the TWIST
spectrum into four blocks of 100,000 cycles as shown in
Table 7. Varied types of filters and wavelets are achieved
by the B-WAVEGEN algorithm for each block with aver-
age signal reduction of 62.5% and damage error percent-
age of 1.57%.

Table 8 illustrates the results of splitting the TWIST
spectrum into eight blocks of 50,000 cycles. It can be seen
that decreasing the block size leads to improvements in
the signal reduction in some blocks. The average signal
reduction and damage difference percentages calculated
by the B-WAVEGEN algorithm are 75.8% and 3.36%,
respectively.

In general, the wavelet type of Reverse Biorthogonal
is listed for all block sections meaning this wavelet is the
optimal choice for editing the TWIST spectrum. Again,
this indicates that the wavelet type is strongly dependent
on the nature of the spectrum. Regarding the signal
reduction relation to the block size, the range of final sig-
nal reduction is between 50% and 93.75% so that a clear

TABLE 6 B-WAVEGEN results for TWIST spectrum for block size of 200,000 cycles

Block No. Cycles Filter Wavelet Decomposition Signal red (%) Damage diff (%)

1 200,000 bior3.7 rbio2.2 2 75.0 3.60

2 200,000 bior6.8 rbio3.1 3 87.5 0.24

— 400,000 — — Averaged —> 81.25 1.92

TABLE 7 B-WAVEGEN results for TWIST spectrum for block size of 100,000 cycles

Block No. Cycles Filter Wavelet Decomposition Signal red (%) Damage diff (%)

1 100,000 bior3.7 rbio3.9 1 50.0 1.93

2 100,000 bior3.3 rbio2.2 2 75.0 0.34

3 100,000 bior2.2 rbio3.1 1 50.0 3.78

4 100,000 bior3.7 rbio3.7 2 75.0 0.23

— 400,000 — — Averaged —> 62.5 1.57

TABLE 8 B-WAVEGEN results for TWIST spectrum for block size of 50,000 cycles

Block No. Cycles Filter Wavelet Decomposition Signal red (%) Damage diff (%)

1 50,000 bior3.5 rbio3.9 1 50.0 7.75

2 50,000 bior3.3 rbio3.7 2 75.0 1.39

3 50,000 bior3.1 rbio1.3 3 87.5 2.57

4 50,000 bior3.3 rbio2.2 2 75.0 4.85

5 50,000 bior6.8 rbio3.1 2 75.0 2.33

6 50,000 bior1.3 rbio3.1 4 93.75 3.93

7 50,000 bior1.5 rbio3.1 2 75.0 0.70

8 50,000 bior3.3 rbio3.9 2 75.0 3.34

— 400,000 — — Averaged —> 75.8 3.36
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relationship between the block size and signal reduction
cannot be established mathematically.

Figure 8 compares the signal reduction and damage
difference percentages for a range of block sizes which
are carried out on the TWIST spectrum. As can be seen,
the damage difference percentage for each block size
selection of TWIST spectrum is under 5% as well. In a
general comparison between Figures 7 and 8, the signal
reduction related to FALSTAFF is higher than TWIST.

4 | CONCLUSIONS AND FUTURE
WORK

In this work, a fatigue test spectrum editing algorithm is
developed using WT and GA optimization (WAVEGEN)
that can reduce cost and fatigue testing time schedule.
The optimization process automatically selects the best
wavelet fitting parameters which reduce the editing pro-
cess time. To estimate the fatigue life of components
under fatigue load spectrum, the stress-life model is
employed. In stress-life model, the fatigue life calculation
is performed using S-N curves, rainflow cycle counting
technique, and the Palmgren–Miner rule. The generated
edited spectrum by WAVEGEN achieves equivalent dam-
age and retains key attributes as well as the main aspects
of the original spectrum. The developed fatigue spectrum
editing algorithm is successfully applied on FALSTAFF
and TWIST spectra with significant signal reductions
while maintaining a damage difference of less than 3%
between unedited and edited spectrum. In order to refine
the methodology, the ability to split the spectrum into
blocks is added to the WAVEGEN editing process. Future

work will validate our analytical results with experimen-
tal fatigue tests performed under uniaxial loading.
Aerospace alloys will be tested in a mechanical testing
system using the original and edited loading spectrum,
and the resultant fatigue lives will be compared. In
addition, the algorithm's capabilities will be expanded to
address multiaxial loading, proportional and non-
proportional.
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