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ABSTRACT 

Pitting corrosion is a primary and most severe failure 
mechanism of oil and gas pipelines. To implement a 
prognostic and health management (PHM) for oil and gas 
pipelines corroded by internal pitting, an appropriate 
degradation model is required. An appropriate and highly 
reliable pitting corrosion degradation assessment model 
should consider, in addition to epistemic uncertainty, the 
temporal aspects, the spatial heterogeneity, and inspection 
errors.  It should also take into account the two well-known 
characteristics of pitting corrosion growing behavior: depth 
and time dependency of pit growth rate. Analysis of these 
different levels of uncertainties in the amount of corrosion 
damage over time should be performed for continuous and 
failure-free operation of the pipelines. This paper reviews 
some of the leading probabilistic data-driven prediction 
models for PHM analysis for oil and gas pipelines corroded 
by internal pitting. These models categorized as random 
variable-based and stochastic process-based models are 
reviewed and the appropriateness of each category is 
discussed. Since stochastic process-based models are more 
versatile to predict the behavior of internal pitting corrosion 
in oil and gas pipelines, the capabilities of the two popular 
stochastic process-based models, Markov process-based and 
gamma process-based, are discussed in more detail. 

1. INTRODUCTION 

Corrosion is the main failure mechanism of oil and gas 
pipelines. Of all corrosion mechanisms, pitting corrosion is 
of most concern in pipelines because of the high rate at which 
pits can grow (Velázquez, Caleyo, Valor, & Hallen, 2009).  
Failure data, provided in the literature, shows that 57.7% of 
oil and gas pipeline failures in Alberta, Canada between 1980 
and 2005 (Papavinasam, 2013) and 15% of all transmission 
pipeline incidents between 1994 and 2004 in the US were due 
to internal corrosion (Papavinasam et al., 2006). Moreover, 
90% of corrosion failures of transmission pipeline sector in 
the US, between 1970 and 1984 were due to localized pitting 
corrosion (Papavinasam, 2013). Therefore, this review paper 
primarily discusses pitting corrosion growth prediction 
models applicable for PHM of oil and gas pipelines.  

Despite significant research efforts in forecasting pitting 
corrosion, there are still many unanswered questions due to 
the highly stochastic nature of the pitting corrosion 
mechanism and a large number of dependent and independent 
influential parameters (Tarantseva, 2010) (Caleyo, 
Velázquez, Hallen, Valor, & Esquivel-Amezcua, 2010). For 
example, parameters that may influence internal pitting 
corrosion are the pH value in the water phase, the water 
chemistry, the protective scale, the CO2 partial pressure, the 
amount of H2S, the effect of oil wetting, the metal alloy 
composition, the temperature, the multiphase flow, and the 
flow rate. Due to the large variations in these parameters, 
interdependencies between them, and also non-monotonic 
effects of some of them, there is a multitude of degradation _____________________ 
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paths for every single pit.  In addition to this variation in 
degradation paths for each pit, there is usually more than one 
pit in a segment of a pipeline and each pit must be analyzed 
individually (by considering dependencies and correlations 
between pits) because the failure at each pit is equal to the 
failure of the whole pipeline. Figure 1 depicts an example of 
pitting corrosion on X70 carbon steel surface in a corrosive 
environment. 

In comparison with conventional reliability analysis that 
mostly gives a population-based assessment, PHM 
approaches can handle corrosion complexity more 
efficiently, especially by utilizing fast developing 
information and inspection technologies that make it possible 
to have real-time data management and processing for each 
individual pipeline and also individual pit (Tsui, Chen, Zhou, 
Hai, & Wang, 2015). Pipeline PHM approaches predict the 
remaining useful life (RUL) of a pipeline based on imprecise 
past and current degradation data gathered through some 
monitoring regime; this imprecision is due to uncertain 
inspection date. This estimation of RUL is vital in condition-
based maintenance by avoiding unnecessary maintenance 
and unpredicted failures (Imanian & Modarres, 2017) 
(Rabiei, Droguett, Modarres, & Amiri, 2015).  

Most PHM methods rely on physics-of-failure (PoF)-based 
or data-driven based models (Imanian & Modarres, 2017). 
PoF-based models have advantages in long-term damage 
behavior prediction, but since they are based on some 
approximations and simplifying assumptions when the 
degradation process is complex (e.g., pitting corrosion), it is 
difficult to estimate the model parameters and validate the 
results (An, Kim, & Choi, 2015). However, studying PoF-
based models is important to identify the root causes of 
pitting corrosion that can provide useful information for 
prognostic purposes. Because of the complexity and inherent 
randomness of pitting corrosion over time, probabilistic data-
driven models are more suitable to describe pitting corrosion 
behavior especially when the results of modeling are used to 
perform reliability analysis (Shibata, 1996) (Valor, Caleyo, 
Alfonso, Rivas, & Hallen, 2007) (Bazán & Beck, 2013).  

In probabilistic data-driven models, the knowledge about 
dependencies between pit depth and independent covariates, 
and also the uncertainties about the degrading process, are 
encapsulated in the inspection data. The extrapolated RUL 
prediction is valid and applicable as long as the resulting 
model from these inspection data is used for predicting RUL 
in pipelines with a similar operational condition. Among 
different probabilistic data-driven PHM approaches (Tsui et 

                                                           
1 It worth noting that internal corrosion of oil and gas pipelines made 
from carbon steel is often referred to as “sweet (CO2) corrosion”. 
However other corrosive species such as hydrogen sulfide, H2S 
(sour corrosion), organic acid, etc., might be involved in this 
corrosion process as well (Nešić, 2007). Among these corrosion 
species, presence of H2S, changes corrosion mechanism 
tremendously because of production of iron sulfide instead of iron 

al., 2015) (An et al., 2015), this paper discusses regression-
based, gamma process-based, and Markov process-based 
models that are usually used to represent pitting corrosion 
process in oil and gas pipelines. 

To emphasize the contribution of this review paper, the 
readers should make note of some other review papers 
(Papavinasam, 2013) (Papavinasam et al., 2006) (Tarantseva, 
2010) (Nyborg, 2010) (Nešić, 2007) that categorize different 
corrosion rate models and modeling approaches. Key 
conclusions of these review papers will follow. 

Nyborg (2010) compared the performance of fourteen 
uniform 𝐶𝐶𝐶𝐶2 0F

1  corrosion rate models for oil and gas 
production systems by applying these models to some 
reliable data from some operating companies. Some of these 
models are empirical and were obtained by using empirical 
regression analysis. On the other hand, some of them are 
mechanistic that take the chemical, electrochemical or 
transport processes into account and some of them are a 
combination of these two approaches and are semi-empirical. 
Among all these models, just four of them have considered 
the localized corrosion (e.g. pitting corrosion, crevice 
corrosion). Nyborg (2010) concluded that none of these 
fourteen models significantly performed better than the 

carbonate.  Therefore, using sweet corrosion model, even by adding 
sulfide correction factor, will not give reliable results (Nyborg, 
2010). Based on field corrosion data, H2S is related to the occurrence 
of localized corrosion, however, the mechanism and location of 
happening are not well understood (Nešić, 2007). 

Figure 1. An example of pitting corrosion on X70 carbon 
steel surface in a corrosive environment (magnification 

scale: 200X) (Modarres & Nuhi, 2010) 
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others for all cases and none of these models can claim better 
than ± 50% accuracy for a wide range of conditions. Two 
main factors that cause this variability are corrosion films and 
oil wetting effects modeling approaches. As it has been 
shown in (Nyborg, CO2 corrosion models for oil and gas 
production systems, 2010), those models that are mostly 
based on regression analysis and physics-of-failure analysis, 
cannot depict the inherent uncertainties in the corrosion 
process even for uniform corrosion. One reason for this 
inaccuracy is that these models mostly have considered level 
1 uncertainty in Figure 2, which is related to lack of 
knowledge about the corrosion process (epistemic 
uncertainty), and they do not take into account the other three 
levels of uncertainty that are discussed later.  

Nesic (2007) categorized available 𝐶𝐶𝐶𝐶2 corrosion rate 
models for uniform internal corrosion of oil and gas pipelines 
into mechanistic models, empirical models and semi-
empirical models and discussed advantages and 
disadvantages of each category. Mechanistic models have a 
strong theoretical background and give accurate and 
physically realistic interpolation and extrapolation prediction 
when they are calibrated with a reliable experimental 
database. However, the main disadvantage of mechanistic 
models is that the prediction results might be unrealistic if 
many simplifying assumptions are used. Recalibrating 
mechanistic models by adding correction factors (to expand 
the range of application) leads to semi-empirical models. 
However, using semi-empirical models for extrapolation can 
result in having unreliable or unrealistic results. The third 
category is the empirical models (e.g., regression-based 
models, neural network-based models) that have very little or 
no theoretical background. These models perform very well 
within their calibration range but have to be used cautiously 
outside this range. Localized 𝐶𝐶𝐶𝐶2  corrosion is considered 
briefly in (Nešić, 2007) as a process that is still not well 
understood and some recent works that have been done in this 
area are addressed. 

Papavinasam et al. (2006), has reviewed different models that 
predict internal pitting corrosion of oil and gas pipelines. 
However, most of the models that are discussed in that review 
are addressing uniform 𝐶𝐶𝐶𝐶2  corrosion rate. 

In a nutshell, the above-mentioned models, including the 
probabilistic ones mostly correspond to level 1 in Figure 2 
and they do not consider the other three levels of uncertainty. 

Figure 2 shows the four hierarchical levels of uncertainty in 
degrading structures. Level 1, captures all model 
uncertainties (epistemic uncertainties) that are applicable to 
all points within a pipeline segment. The other three levels, 
apply to each local point in that segment; Level 2 indicates 
location-specific uncertainties that are related to uncertainties 
in known covariates (e.g., temperature, pressure, material 
properties) or aleatory effects due to unknown or omitted 
covariates (e.g., top of line corrosion that sometimes happens 
due to water condensation in natural gas pipelines); Level 3 

reflects the temporal uncertainty that models the difference 
between two defects, which even have the same load 
conditions and also in a similar location but can grow 
differently; and level 4 represents three kinds of inspection 
uncertainties (measurement error, probability of detection 
and reportability error) that need to be taken into account. 
Measurement error is a function of in-line inspection (ILI) 
device and measurement conditions, probability of detection 
(POD) is a function of the actual defect size, and reportability 
is a function of the lower detection threshold of the ILI device 
(Maes et al., 2009).  

This paper defines an appropriate pitting corrosion 
degradation model for PHM analysis of oil and gas pipelines 
as a model that considers all of these four levels of 
uncertainty. In addition to the above-mentioned criteria, 
pitting corrosion rate has some characteristics all of which 
should be satisfied by an appropriate pitting corrosion 
degradation model.  First, the pitting corrosion growth rate is 
depth-dependent (characteristic I; the corrosion rate of a 
deeper pit is greater than the corrosion rate of a shallower 
one) and second, the pitting corrosion rate is time-dependent 
(i.e., for a single pit the corrosion rate decreases over time 
(Nešić, 2007)(Valor, Caleyo, Alfonso, Velázquez, & Hallen, 
2013)) and this declining behavior follows a power law 
model with a less than one positive exponent (characteristic 
II)  (Velázquez et al., 2009) (Ossai, Boswell, & Davies, 2015) 
(Nuhi, Seer, Al Tamimi, Modarres, & Seibi, 2011). 

To the best of the authors’ knowledge, there is no 
comprehensive review paper on pitting corrosion growth 
models applicable for prognostic and health management of 
oil and gas pipeline. This paper reviewed the commonly used 
pitting corrosion growth models; we focused on most highly 
cited and also more recently developed models. We then 
evaluated the published models by checking if they can 
model the above-mentioned characteristics and different 
uncertainty levels. 

Figure 2. Hierarchical levels of uncertainty in degrading 
systems (modified) (Maes, Faber, & Dann, 2009) 

Level 4: Local inspection uncertainty, detectability and 
reportability

Level 3: Temporal uncertainty of the local degradation 
increments

Level 2: Location-specific uncertainty

Level 1: Degradation model uncertainty
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2. PROBABILISTIC DATA-DRIVEN MODELS  

Probabilistic data-driven based models can be classified into 
random-variable based and stochastic-process based models. 
The main difference between these two categories is that the 
latter one deals with the temporal variability of the 
degradation process, which leads to more realistic prediction 
(Zhang & Zhou, 2013), while the former one does not 
consider the third level of uncertainty in Figure 2. 

Figure 3 shows this classification and also the corresponding 
sub-classes for each class. These models are the most 
commonly used probabilistic data-driven ones that have been 
used in the literature to model pitting corrosion growth in the 
oil and gas pipelines. These models are explained in more 
detail in the following sections. 

2.1. Random Variable-Based Corrosion Growth Models 

The random variable-based corrosion growth models are the 
most common ones in the literature for reliability analysis of 
corroding pipelines (Zhang & Zhou, 2013). These models 
consider corrosion uncertainty in terms of time-independent 
random variables. Linear and nonlinear random variable-
based growth models are discussed below. 

2.1.1. Linear random variable corrosion growth model 

By having inspection data for at least two time instances, the 
growth rate for each pit depth can be estimated by the linear 
Eq.(1) and the probability distribution function of corrosion 
rate for a population of defects can be extracted accordingly.  

𝜐𝜐𝑑𝑑 =
𝐷𝐷(𝑡𝑡2) − 𝐷𝐷(𝑡𝑡1)

𝑡𝑡2 − 𝑡𝑡1
 (1) 

where 𝜐𝜐𝑑𝑑 is the random variable that indicates the growth rate 
of a specific pit (𝑑𝑑), 𝐷𝐷(𝑡𝑡2) is the maximum depth of that pit 
(𝑑𝑑) at time 𝑡𝑡2 and 𝐷𝐷(𝑡𝑡1) is the maximum depth of that pit (𝑑𝑑) 
at time 𝑡𝑡1. The randomness of the corrosion rate is due to the 
large variation in the depth of the pits caused by variations of 
the metal properties and the environmental conditions. 

Linear random variable models are used commonly because 
they are simple and can be adjusted to limited corrosion data 
easily (i.e., only two sets of data, however, these models can 
be applied to one set of data as well, by assuming that stable 
pits start to grow from the beginning of corrosion process) 
(Bazán & Beck, 2013). However, extrapolating this model 
over time overestimates the corrosion degradation and may 
give a conservative estimation of the reliability of the 
pipeline,  because as mentioned before, the behavior of 
pitting corrosion growth follows a nonlinear power function 
with a positive exponent of less than one (Bazán & Beck, 
2013) (Ossai et al, 2015) (Nuhi et al., 2011). Another 
drawback of the linear models is that if they are projected 
backward, the pitting initiation time 𝑡𝑡0 is often found to be 
negative which is physically meaningless (Bazán & Beck, 
2013). This model considers level 1 in Figure 2 nor the 

above-mentioned characteristics I and II. Temporal 
variability can be added to this model by using a Poisson 
square wave process that is explained in Section 2.2.1. 

2.1.2. Non-Linear random variable corrosion growth 
model 

As mentioned above, it is widely accepted that the pitting 
corrosion growth can be described by a power function with 
positive exponents of less than one (Bazán & Beck, 2013) 
(Ossai et al., 2015) (Nuhi et al., 2011). Eq. (2) shows this 
model that is proposed in (Romanoff, 1957). 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(t) = 𝑘𝑘𝑡𝑡𝛼𝛼 (2) 

Considering the corrosion initiation time, a more accurate 
version of this model as shown in Eq. (3) is used by some 
other researchers (Velázquez et al., 2009) (Ossai et al., 2015).  

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(t) = 𝑘𝑘(𝑡𝑡 − 𝑡𝑡0)𝛼𝛼  (3) 

where 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(t) is the maximum defect depth at time 𝑡𝑡,  𝑡𝑡0 is 
the corrosion initiation time, 𝑘𝑘 is a proportionality factor and 
𝛼𝛼 is an exponent factor. Note that in external corrosion, 𝑡𝑡0 
represents the time that is required for coating damage plus 
the time period of effectiveness of cathodic protection, and in 
internal corrosion, 𝑡𝑡0 represents the initiation time of stable 
pit growth (Valor et al., 2013). In an extension to the model 
in Eq. (3), Velazquez et al. (2009), performed a multivariate 
regression analysis to correlate the dependent variable 
(𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) and independent variables (e.g. exposure time, soil 
and pipeline properties) for external pitting corrosion. They 
expressed 𝑘𝑘 and 𝛼𝛼 as linear combinations of the soil and pipe 
variables as shown in Eq. (4). 

Figure 3. Breakdown of probabilistic data-driven based 
models for internal localized corrosion in pipelines 
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𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑘𝑘(𝑡𝑡 − 𝑡𝑡0)𝛼𝛼

= �𝑘𝑘0 + �𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� (𝑡𝑡 − 𝑡𝑡0)𝑛𝑛0+∑ 𝑛𝑛𝑗𝑗𝑚𝑚𝑗𝑗
𝑚𝑚
𝑗𝑗=1  (4) 

where 𝑥𝑥𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ random predictor variable (e.g. pH) and 𝑘𝑘𝑖𝑖 
and 𝑛𝑛𝑗𝑗 are regression coefficients for this predictor.  

Based on (Velázquez et al., 2009), the proportionality 
coefficient 𝑘𝑘 is mostly correlated to pH, resistivity, dissolved 
ion concentrations, and redox potential. On the other hand, 
the exponent coefficient 𝛼𝛼 is a function of water content, bulk 
density, coating type, and the pipe-to-soil potential.   

In order to validate this model, Velázquez et al. (2009) 
plotted actual depth vs. predicted depth for 123 pits collected 
from another pipeline. Based on the visual examination of the 
plot, they concluded that the scatter of the predicted depth 
around the perfect correlation line was acceptable. 

Ossai et al. (2015) used Eq. (5) to model internal pitting 
corrosion of sixty non-piggable oil and gas pipelines based 
on ten years of corrosion data. They assumed that the pitting 
initiation time is zero. The regression model that they used is 
shown in Eq.(5). 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑘𝑘(𝑡𝑡 − 0)𝛼𝛼 = �𝑒𝑒�𝛾𝛾0+∑ 𝛾𝛾𝑗𝑗𝛾𝛾𝑗𝑗
𝑘𝑘
𝑗𝑗=1 �� 𝑡𝑡𝛼𝛼 (5) 

Here 𝛾𝛾0 is the intercept, 𝛾𝛾𝑗𝑗 is regression coefficient and 𝑦𝑦𝑗𝑗   is 
𝑗𝑗𝑡𝑡ℎ  predictor variable (i.e., operational parameters) that 
affects internal pitting corrosion. That study (Ossai et al., 
2015) shows that 𝐶𝐶𝐶𝐶2 partial pressure, flow rate, and chloride 
ion concentration are moderately correlated with maximum 
pit depth. In contrary, water cut, pH and sulfate ion 
concentration are weakly correlated with maximum pit depth.  

Ossai et al. (2015) validated this model by calculating the root 
mean square percentage error (RMSPE) for the prediction 
data from three different pipelines with pits divided into four 
different pitting rate categories (low, moderate, high and 
severe). They calculated RMSPE for each combination with 
results ranging from 0.52~3.54, 0.59~7.26, 0.51~1.03 and 
0.6~1.20 for low, moderate, high, and severe pitting 
corrosion rate category respectively. These ranges show the 
level of prediction accuracy of this model for each category. 

This model considers level 1 in Figure 2  (epistemic 
uncertainty) and also characteristics II (having power law 
behavior) but it neither addresses the other levels in Figure 2 
nor the characteristics I (dependency of the corrosion rate on 
the depth of the pit). Temporal variability can be added to this 
model by using a Poisson square wave process that is 
explained in Section 2.2.2. 

2.2. Stochastic-process based corrosion growth models 

The most commonly used stochastic processes that have been 
used to characterize the growth of corrosion defects are 
Markov process and gamma process (Zhang & Zhou, 2013). 

Two other stochastic processes, inverse Gaussian process 
(Zhang, Zhou, & Qin, 2013) and Bayesian dynamic linear 
model (Zhang & Zhou, 2014), also have been used for this 
modeling purpose and are discussed briefly at the end of the 
gamma process section. Before describing these processes, 
two other regression-based stochastic process-based models 
are presented.  

2.2.1. Linear stochastic process corrosion growth model 

As it was discussed in Section 2.1.1 and Section 2.1.2, 
random variable models do not consider the variability of 
corrosion growth over time (level 3 in Figure 2). To consider 
this temporal variability, Bazan and Beck (2013) modeled the 
defect growth rate as a Poisson square wave process (PSWP). 
Figure 4 shows a realization of a PSWP that represents the 
stochastic behavior of the defect growth rate (blue line). 
Moreover, this figure portrays a realization of the resulting 
stochastic defect size (red line), which is the accumulation of 
corrosion degradation at each random time interval. In this 
process, both pulse height (𝑌𝑌𝑖𝑖  ) and pulse duration (𝑡𝑡𝑖𝑖+1 −
𝑡𝑡𝑖𝑖) are expressed as random variables. Pulse durations are 
characterized as independent and identically distributed 
(i.i.d) random variables that are exponentially distributed 
(Poisson process) and pulse heights (i.e., maximum pit depth 
growth rate) are characterized as i.i.d random variables that 
can be modeled by any strictly positive random variable 
distribution (e.g., the gamma distribution (Bazán & Beck, 
2013)). In this model, the maximum pit depth at each time 
instance can be estimated by using Eq. (6). 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑖𝑖+1) = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑖𝑖) + 𝑌𝑌𝑖𝑖(𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖)    

  𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 = 0,1, … ,𝑛𝑛 
(6) 

where 𝑛𝑛 is the number of pulses, 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(t) is maximum pit 
depth at time 𝑡𝑡, and 𝑌𝑌𝑖𝑖   is the pulse height. Bazan and Beck 
(2013) used a data-fitting optimization algorithm to find out 
the parameters of this model (exponential distribution 
parameter for pulse durations, scale and shape parameter of 
gamma distribution for pulse heights) based on two sets of 

Figure 4. Linear stochastic process model (Bazán & Beck, 
2013) 
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available inspection data. This model also (like the linear 
random variable model) has the limitation that backward 
extrapolation may lead to negative corrosion initiation time 
that is meaningless and violates the physics of the corrosion 
process. 

2.2.2.  Non-Linear stochastic process corrosion growth 
model 

To add temporal variability to the model in Section 2.1.1, 
Bazan and Beck (2013) used PSWP with pulse heights (𝑌𝑌𝑖𝑖) 
and durations (𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖)  according to Eq. (7) that shows the 
increment in defect size in each interval. Figure 5 shows a 
realization of this stochastic process. 

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑖𝑖+1)  

= 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑖𝑖) + 𝑌𝑌𝑖𝑖[(𝑡𝑡𝑖𝑖+1 − 𝑡𝑡0)𝛼𝛼 − (𝑡𝑡𝑖𝑖 − 𝑡𝑡0)𝛼𝛼] 

𝑓𝑓𝑓𝑓𝑓𝑓    𝑖𝑖 = 0,1, … ,𝑛𝑛 

(7) 

In Eq. (7) 𝑌𝑌𝑖𝑖 is the proportionality coefficient of maximum pit 
depth and operation parameters, 𝛼𝛼 is the exponent 
coefficient, 𝑛𝑛  is the number of the pulses, and 𝑡𝑡0  is the 
corrosion initiation time.  

Having distributions of maximum pit depths at two time 
instances, parameters of this model were estimated by 
applying a data-fitting optimization algorithm (Bazán & 
Beck, 2013). These parameters include the exponential 
distribution parameter (for pulse duration), scale and shape 
parameters of the gamma distribution (for pulse height), and 
scale and location parameters for lognormal distribution (for 
exponent factor). In contrast to linear models (Eq. (6)), the 
non-Linear stochastic process corrosion rate model (Eq. (7)) 
does not estimate the corrosion initiation time as a negative 
value. 

Bazan and Beck (2013) calibrated these four models (linear 
random, non-linear random, linear stochastic and non-linear 
stochastic models) to the same set of corrosion data to explore 
the difference between them. They used actual corrosion data 

in a pipeline collected for only two inspections. Therefore, 
without data on the third set of inspections, they could not 
evaluate the prediction capabilities of these four models. 
However, they showed that non-linear stochastic process 
model represents problem physics much better and it matches 
the available corrosion data reasonably well. 

2.2.3. Markov process-based corrosion growth models 

Markov processes have been used by many researchers to 
model corrosion process. The stochastic process {𝐷𝐷(𝑡𝑡), 𝑡𝑡 ≥
0} is a continuous-time Markov chain (Markov process), if 
for all  𝑠𝑠, 𝑡𝑡 ≥ 0 , 𝑑𝑑(𝑢𝑢), 0 ≤ 𝑢𝑢 ≤ 𝑠𝑠 , and nonnegative 
integers 𝑖𝑖 and 𝑗𝑗: 

𝑃𝑃{𝐷𝐷(𝑡𝑡 + 𝑠𝑠) = 𝑗𝑗|𝐷𝐷(𝑠𝑠) = 𝑖𝑖,𝐷𝐷(𝑢𝑢) = 𝑑𝑑(𝑢𝑢), 0 ≤ 𝑢𝑢
< 𝑠𝑠} 

= 𝑃𝑃{𝐷𝐷(𝑡𝑡 + 𝑠𝑠) = 𝑗𝑗|𝐷𝐷(𝑠𝑠) = 𝑖𝑖} 
(8) 

where 𝐷𝐷(𝑠𝑠), represents the condition (state) of the system at 
time 𝑠𝑠. 

In other words, given that the system is in state 𝑖𝑖 at time 𝑠𝑠 
(𝐷𝐷(𝑠𝑠) = 𝑖𝑖), the future states (𝐷𝐷(𝑡𝑡 + 𝑠𝑠)) do not depend on the 
previous states (D(𝑢𝑢) = 𝑑𝑑(𝑢𝑢), 0 ≤ 𝑢𝑢 < 𝑠𝑠). This is the so-
called Markovian property and a continuous-time stochastic 
process is a Markov process if it satisfies the Markovian 
property. In addition, if 𝑃𝑃{𝐷𝐷(𝑡𝑡 + 𝑠𝑠) = 𝑗𝑗|𝐷𝐷(𝑠𝑠) = 𝑖𝑖}  is 
independent of  𝑠𝑠 , the Markov process is said to have 
homogeneous or stationary transition probability (Ross, 
1996). In a Markov process, transition rate, 𝜆𝜆𝑖𝑖, between states 
𝑖𝑖  and 𝑗𝑗 , are defined in such a way that the probability of 
transition between states 𝑖𝑖  and 𝑗𝑗  in the infinitesimal time 
interval 𝛿𝛿𝑡𝑡 , is 𝜆𝜆𝑖𝑖𝛿𝛿𝑡𝑡  and the probability of more than one 
transition in this time interval is negligible. The Kolmogorov 
differential equation that represents this process is given in 
Eq. (9) (Ross, 1996) (Bhattacharya & Waymire, 2009). 

𝑑𝑑𝑃𝑃1(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝜆𝜆1𝑃𝑃1(𝑡𝑡)           

𝑑𝑑𝑃𝑃𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −𝜆𝜆𝑖𝑖−1𝑃𝑃𝑖𝑖−1(𝑡𝑡) − 𝜆𝜆𝑖𝑖𝑃𝑃𝑖𝑖(𝑡𝑡),  

𝑖𝑖 = 2, … . ,𝑁𝑁     𝑁𝑁 = 𝑁𝑁𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑓𝑓 𝑓𝑓𝑓𝑓 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑒𝑒𝑠𝑠 

(9) 

Here 𝑃𝑃𝑖𝑖(𝑡𝑡) represents probability of being in state 𝑖𝑖 at time 𝑡𝑡. 

In Markov process-base corrosion rate models, the thickness 
of the pipeline is divided into 𝑁𝑁 finite states and presence of 
the maximum pit depth in each state at any point in time can 
be represented by a discrete random variable 𝐷𝐷 (𝑡𝑡 ).  The 
ultimate goal of the analysis is to predict probability of being 
in each state at each point in time (𝑃𝑃{𝐷𝐷(𝑡𝑡) = 𝑖𝑖} = 𝑃𝑃𝑖𝑖(𝑡𝑡), 𝑖𝑖 =
1,2, … ,𝑁𝑁). The important issue in these models is how to find 
the transition rate between states and how to correlate these 
transition rates to corrosion rates. In other words, these 
models try to find a valid set of transition rates between states 
by using available corrosion data for a specific pipeline to 

Figure 5. Non-Linear stochastic process model (Bazán & 
Beck, 2013) 
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predict both the corrosion growth behavior of current pits and 
also new pits in the same or comparable pipelines. See (Ross, 
1996) (Bhattacharya & Waymire, 2009) for more details on 
Markov processes. In the following subsections, some main 
works that have been done in this area are presented.  

Non-homogeneous Markov process corrosion growth 
model Provan and Rodriguez (1989) proposed a non-
homogeneous (transition rates are time-dependent) Markov 
process model to describe the growth of the maximum pit 
depth over time for a specific system for the first time. The 
gist of this model is the proposed non-homogeneous 
transition rate relationship shown in Eq. (10). 

𝜆𝜆𝑗𝑗(𝑡𝑡) =
𝜆𝜆𝑗𝑗(1 + 𝜆𝜆𝑡𝑡)

1 + 𝜆𝜆𝑡𝑡𝑘𝑘
    𝑗𝑗 = 1,2, … ,𝑛𝑛 (10) 

where 𝜆𝜆𝑗𝑗 is the transition rate from state 𝑗𝑗 to state 𝑗𝑗 + 1, 𝑡𝑡 is 
exposure time, and positive values 𝜆𝜆  and 𝑘𝑘  are the 
parameters of the pitting corrosion system. As mentioned 
before, the thickness of the pipeline is divided into a 
discretized space of states and being in each state indicates 
that the maximum depth of the pit is in that state. This model 
satisfies characteristic I and II that were mentioned 
previously. In other words, for greater 𝑗𝑗 (i.e., pit depth is in 
the deeper state), 𝜆𝜆𝑗𝑗 is greater. Also for a constant 𝑗𝑗, transition 
rate (which is proportional to corrosion rate (Valor et al., 
2007)) decreases over time (as long as 𝑘𝑘 is greater than 1, 
which is the case of two examples that have been used in 
(Provan & Rodriguez III, 1989)). To determine the 
parameters of the pitting corrosion system (𝜆𝜆 and 𝑘𝑘), Provan 
et al. (1989) used an iteration procedure to find the proper 
values of 𝜆𝜆 and k (which depend on the selected number of 
the states) that give the closest fit to their own experimental 
corrosion data for stainless steel (Provan & Rodriguez III, 
1989) and also corrosion data for aluminum given in (Aziz, 
1956). To validate their model, Provan and Rodriguez (1989) 
visually compared the actual and predicted probability 
histograms of maximum pit depth at different points in time 
and concluded that their results give ample confidence in 
their proposed approach. The main drawback of this model 
(Eq. (10)) is that there is no physical meaning behind it and 
also there is no explanation about how to use this model for 
more than one pit (Valor et al., 2007). Also, this model does 
not address level 2, 3 and 4 uncertainties in Figure 2. 

Non-homogeneous Poisson process for pit initiation and 
non-homogeneous Markov processes for pit growth Hong 
(1999) proposed a model in which pit initiation was modeled 
by a non-homogeneous Poisson process (which is a valid 
assumption because most of the pits are generating at the 
beginning of the corrosion process (Aziz, 1956), therefore pit 
initiation times are not homogeneously distributed).  Also, pit 
growth process was modeled by a non-homogeneous Markov 
process. To find a closed-form solution for the Kolmogorov 
differential equation (Eq. (9)), first, the author has assumed 
homogeneity for both pits initiation times (homogeneous 

Poisson process) and pits growth process (homogeneous 
Markov process) and then the time dependency that causes 
non-homogeneity was modeled by using the so-called time-
condensation method (Bogdanoff, Kozin, & Saunders, 1985). 
To do this transformation, the variable 𝑡𝑡  (that represents 
time) in the homogeneous equations is replaced by 𝑡𝑡𝛽𝛽 , in 
which 𝛽𝛽  is a constant of the pitting corrosion that can be 
obtained by minimizing the errors of observed and predicted 
mean values of the maximum pit depths.  

This model (Eq. (11)) gives the probability (𝜃𝜃𝑖𝑖(𝑡𝑡) ) that 
maximum pit depth be in a state less than or equal to state 𝑖𝑖 
at time 𝑡𝑡 by considering all pits that have been generated in 
time interval [0, 𝑡𝑡]. 

𝜃𝜃𝑖𝑖(𝑡𝑡) = 

exp (−𝜈𝜈𝑡𝑡𝛽𝛽(1 − 

1
𝜆𝜆𝑡𝑡𝛽𝛽

�
𝛾𝛾(𝑗𝑗, 𝜆𝜆𝑡𝑡𝛽𝛽)
(𝑗𝑗 − 1)!

)),    𝑖𝑖 = 1, … ,𝑛𝑛 − 1
𝑖𝑖

𝑗𝑗=1

 

(11) 

where 𝜈𝜈 is pit generation rate, 𝛽𝛽 is the model parameter, 𝜆𝜆 is 
the growth rate, 𝑛𝑛 is the number of discretized states, and 
𝛾𝛾�𝑗𝑗, 𝜆𝜆𝑡𝑡𝛽𝛽� is an incomplete gamma function.  

To validate this model, Hong (1999) compared the mean of 
actual and predicted values of maximum pit depth visually. 
But Hong did not discuss any validation against additional 
data.  

One drawback of Hong’s model is that the proposed 
probability distribution of maximum pit depth is not a 
Gumbel distribution as it would be expected according to the 
published results in the literature (Valor et al., 2007); because 
it is well-known that extreme-value analysis using the 
Gumbel distribution is the most successful application in 
statistical analysis to predict the maximum pit depth in a large 
area by using a small number of samples within a small area 
(Shibata, 1996).  Another drawback is that the results of the 
model depend on the number of states (Valor et al., 2007).  In 
addition, it does not consider level 2, 3 and 4 uncertainties in 
Figure 2. 

Non-homogeneous Linear Pure Birth Markov Process 
This model (Valor et al., 2007) (Caleyo, Velázquez, Valor, & 
Hallen, 2009) proposes, for the first time, a methodology to 
link pit initiation and pit growth stages for multiple pits. For 
pit initiation, the Weibull distribution is used by interpreting 
the initiation time of each pit as the time to the first failure of 
a part of a system (Ascher & Feingold, 1984). A continuous-
time, non-homogeneous linear pure birth Markov process 
was used to model temporal non-homogeneity of pit 
evolution. In this process, transition rates from one state to 
another satisfy the forward Kolmogorov Equation (Ross, 
1996) (Bhattacharya & Waymire, 2009)  with the following 
equation. 
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𝜆𝜆𝑗𝑗(𝑡𝑡) = 𝑗𝑗𝜆𝜆(𝑡𝑡) (12) 

where 𝜆𝜆𝑗𝑗(𝑡𝑡) represents the transition rate between the 𝑗𝑗𝑡𝑡ℎ to 
the (𝑗𝑗 + 1)𝑡𝑡ℎ state during the time interval [𝑡𝑡 + 𝛿𝛿𝑡𝑡].  𝛿𝛿𝑡𝑡 is an 
arbitrarily small unit of time that the probability of more than 
one transition is negligible. Since 𝜆𝜆𝑖𝑖(𝑡𝑡) > 𝜆𝜆𝑗𝑗(𝑡𝑡)  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 > 𝑗𝑗, 
characteristic I is already satisfied.  

An advantage of using linear pure birth Markov process is 
that it has a closed-form solution for the transition probability 
from the 𝑁𝑁𝑡𝑡ℎ state to the 𝑛𝑛𝑡𝑡ℎ  state in the interval (𝑡𝑡0 , 𝑡𝑡). This 
closed-form solution for this process that represents the 
negative binomial distribution is shown in Eq. (13) (Caleyo 
et al., 2009). 

𝑃𝑃𝑚𝑚,𝑛𝑛(𝑡𝑡0, 𝑡𝑡) 

= �𝑛𝑛 − 1
𝑛𝑛 −𝑁𝑁�𝑒𝑒

−{𝜌𝜌(𝑡𝑡)−𝜌𝜌(𝑡𝑡0)}𝑚𝑚�1 − 𝑒𝑒−{𝜌𝜌(𝑡𝑡)−𝜌𝜌(𝑡𝑡0)}�
𝑛𝑛−𝑚𝑚

 
(13) 

where  

𝜌𝜌(𝑡𝑡) = � 𝜆𝜆(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
  

According to this equation by having  𝜆𝜆(𝑡𝑡) , 𝜌𝜌(𝑡𝑡) can be 
estimated and subsequently  𝑃𝑃𝑚𝑚,𝑛𝑛(𝑡𝑡0, 𝑡𝑡) can be calculated by 
Eq. (13) and by having the initial pit depth distribution 
(𝑝𝑝𝑚𝑚(𝑡𝑡0)), the probability of being in each state at each point 
in time (𝑝𝑝𝑛𝑛(𝑡𝑡)) can be estimated according to Eq. (14). 

𝑝𝑝𝑛𝑛(𝑡𝑡) = � 𝑝𝑝𝑚𝑚(𝑡𝑡0)𝑝𝑝𝑚𝑚,𝑛𝑛(𝑡𝑡0

𝑛𝑛

𝑚𝑚=1

, 𝑡𝑡) (14) 

The gist of this model is the proposed approach to find the 
transition rate 𝜆𝜆(𝑡𝑡) based on the estimated corrosion growth 
model. This model is based on this assumption that the mean 
of the stochastic process (linear pure birth Markov process 
(Eq. (16)) can be assumed to be equal to the mean of the 
deterministic damage process (Eq. (3)).  This assumption is 
valid for some processes under specific assumptions that are 
given in (Cox & Miller, 1965). By equating these two means, 
𝜆𝜆(𝑡𝑡) can be obtained from Eq. (15). 

𝜆𝜆(𝑡𝑡) =
𝛼𝛼

𝑡𝑡 − 𝑡𝑡0
 (15) 

where 𝛼𝛼  and 𝑡𝑡0  are the exponent coefficient and corrosion 
initiation time in the power law model (Eq. (3)).  

The mean of the linear growth Markov process can be 
estimated by Eq. (16). 

𝑀𝑀(𝑡𝑡) = �𝑁𝑁. 𝑝𝑝𝑚𝑚(𝑡𝑡)
𝑛𝑛

𝑚𝑚=1

 (16) 

Where 𝑛𝑛  is the number of the states and 𝑝𝑝𝑚𝑚(𝑡𝑡)  is the 
probability of being in state 𝑁𝑁 at time 𝑡𝑡. 

In this approach, there is no limitation on the number of 
discretized states because there is a closed-form solution for 

this model. However, there are two important unanswered 
questions about this model that have been mentioned by the 
authors of this paper themselves. First, the validity of the 
assumption of equating stochastic and deterministic means 
for the case of pitting corrosion and second, the applicability 
of this model for different kind of pit populations. 

An important question that has been answered by this model 
in (Valor, Caleyo, Alfonso, Rivas, & Hallen, 2007) is that 
how to use Eq. (13) for multiple pits with different pit 
initiation times. By assuming that 𝑁𝑁 pits initiate and grow 
independently and also assuming that all of them are in state 
1 at initiation time, the probability that the deepest pit is in a 
state less than or equal to state 𝑖𝑖 at time 𝑡𝑡 can be estimated by 
Eq. (17). 

𝜃𝜃(𝑖𝑖, 𝑡𝑡) = ��1 − �1 − 𝑒𝑒−{𝜌𝜌(𝑡𝑡−𝑡𝑡𝑘𝑘)}�
𝑖𝑖
�

𝑚𝑚

𝑘𝑘=1

 (17) 

Where pit initiation process is considered by parameters 𝑡𝑡𝑘𝑘 
and pit growth process is considered by 𝜌𝜌(𝑡𝑡). 

Valor et al. (2007) showed that for large 𝑁𝑁, this cumulative 
distribution function (Eq. (17)) follows a Gumbel distribution 
and for a special case (assuming pit initiation times are equal 
for all pits) they found a lower bound for 𝑁𝑁 as an important 
parameter when pit initiation and growth are combined in 
their proposed model.  

The parameters of the proposed model (𝑡𝑡𝑘𝑘,𝜌𝜌(𝑡𝑡) and 𝑁𝑁) can 
be obtained by minimizing a total error function 𝐸𝐸𝑇𝑇 given in 
Eq. (18).  

𝐸𝐸𝑇𝑇 = ����𝜇𝜇𝑒𝑒𝑖𝑖 − 𝜇𝜇𝑝𝑝𝑖𝑖 �
2 + ��𝜎𝜎𝑒𝑒𝑖𝑖 − 𝜎𝜎𝑝𝑝𝑖𝑖�

2�
𝑁𝑁

𝑖𝑖=1

 (18) 

Where (𝜇𝜇𝑝𝑝𝑖𝑖 ,𝜎𝜎𝑝𝑝𝑖𝑖) and (𝜇𝜇𝑒𝑒𝑖𝑖 ,𝜎𝜎𝑒𝑒𝑖𝑖) are the mean value and variance 
of the 𝑖𝑖𝑡𝑡ℎ  predicted and experimental extreme value 
distribution; respectively. 

Valor et al. (2007) validated this model by calculating the 
mean root-square error (MRSE). They used experimental 
data published by Aziz (1956), Provan and Rodriguez (1989), 
Melchers (2004), Strutt, Nicholls, & Barbier (1985), and 
showed that the results of their proposed model using those 
experimental data are better (lower MRSE) than reported 
results in the those works. This model had the most extensive 
validation in comparison with the other workes that are 
reviewed in the current paper. 

This model considered characteristic I and II. Also, this 
model considers pit initiation process, pit growth process, and 
multiple independent pits growth. However, it does not 
consider level 2, 3 and 4 uncertainties in Figure 2. 

Another drawback of Markov process-based models is that it 
is not straightforward to update these models by Bayesian 
inference in case of new imperfect ILI data (Zhang & Zhou, 
2014).  
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2.2.4. Gamma process-based corrosion growth models 

The gamma process is a stochastic process with independent, 
non-negative, gamma distributed increments. 
Mathematically speaking, a gamma process with shape 
function 𝛼𝛼(𝑡𝑡) and scale parameter 𝛽𝛽 is a stochastic process 
{𝐷𝐷(𝑡𝑡), 𝑡𝑡 ≥ 0} with the following properties: 

𝛼𝛼(𝑡𝑡) > 0 is a non-decreasing, right-continuous, real-valued 
function for 𝑡𝑡 ≥ 0 and 𝛼𝛼(0) =0 

• 𝛽𝛽 > 0 

• 𝐷𝐷(0) = 0 with probability 1 

• 𝐷𝐷(𝜏𝜏) − 𝐷𝐷(𝑡𝑡)~𝐺𝐺𝑠𝑠(𝛼𝛼(𝜏𝜏) − 𝛼𝛼(𝑡𝑡),𝛽𝛽) for all 𝜏𝜏 > 𝑡𝑡 ≥ 0; 

• 𝐷𝐷(𝑡𝑡) has independent increment 

Where 𝐺𝐺𝑠𝑠  indicates gamma distribution with following 
probability density function. 

𝐺𝐺𝑠𝑠(𝑑𝑑|𝛼𝛼,𝛽𝛽) =
𝛽𝛽𝛼𝛼

𝛤𝛤(𝛼𝛼) 𝑑𝑑
𝛼𝛼−1 𝑒𝑒𝑥𝑥𝑝𝑝(−𝛽𝛽𝑑𝑑) . 𝐼𝐼(0,∞)(𝑑𝑑) (19) 

where 𝐼𝐼(0,∞)(𝑑𝑑) = 1  for 𝑑𝑑 > 0  and zero otherwise and 
Γ(𝛼𝛼) = ∫ 𝑡𝑡𝛼𝛼−1𝑒𝑒−𝑡𝑡∞

𝑡𝑡=0 𝑑𝑑𝑡𝑡  is the gamma function (Van 
Noortwijk, 2009). 

Due to the monotonic increasing nature of the gamma 
process, it is an appropriate process for degradation 
mechanisms such as wear, fatigue, corrosion, creep, etc. 
Also, mathematical tractability is another advantage of this 
process. Using this process implies that the defect size is 
always increasing when there is no maintenance (Castro, 
Caballé, & Pérez, 2015) (Frangopol, Kallen, & Van 
Noortwijk, 2004).  

Van Noortwijk (2009) published a comprehensive survey of 
the application of the gamma process in maintenance. The 
following briefly explains two examples of those works that 
have used the gamma process to model the pipeline corrosion 
defect growth.  

Maes et al. (2009) proposed a hierarchical Bayes framework 
(Figure 6) to model pipeline defect growth subject to ILI 
uncertainty. This framework can incorporate new inspection 
data and update the corrosion growth model accordingly. 

Different levels of uncertainty are considered in this work as 
follows. Level 4 in Figure 2 is related to inspection 
uncertainties. These uncertainties can be categorized to 
measurement error, detectability, and reportability error. In 
(Maes et al., 2009) measurement errors are assumed to be 
normally distributed with means equal to zero and known 
location dependent variances (that might be correlated to the 
other locations (level 2 and 4 in Figure 2)). Eq. (20) shows 
the relationship between measured size, 𝐷𝐷𝑀𝑀,𝑗𝑗,𝑖𝑖, and actual true 
degradation, 𝐷𝐷𝑗𝑗,𝑖𝑖, for the 𝑗𝑗𝑡𝑡ℎ defect at 𝑖𝑖𝑡𝑡ℎ inspection time. 

𝐷𝐷𝑀𝑀,𝑗𝑗,𝑖𝑖 = 𝐷𝐷𝑗𝑗,𝑖𝑖 + 𝜀𝜀𝑗𝑗,𝑖𝑖 (20) 

Where 𝜀𝜀𝑗𝑗,𝑖𝑖 is the measurement error for a specific inspection 
device and measurement conditions at a given location that is 
usually correlated to inspection device bias and interpretation 
algorithm. 

To model probability of detection (POD) that depends on the 
size of the defect, a detection indicator variable, (𝐷𝐷𝐼𝐼𝑗𝑗,𝑖𝑖), that 
follows Bernoulli distribution is defined according to Eq. 
(21). Then the observable degradation, (𝐷𝐷𝑂𝑂,𝑗𝑗,𝑖𝑖), would be the 
product of this detection indicator ( 𝐷𝐷𝐼𝐼𝑗𝑗 ,𝑖𝑖;  𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝐷𝐷𝐼𝐼𝑗𝑗,𝑖𝑖 =
1 corresponding to successful detection) and the uncertain 
measurement due to sizing error, (𝐷𝐷𝐷𝐷𝑀𝑀,𝑗𝑗,𝑖𝑖) (Eq. (22)).  

𝐷𝐷𝐼𝐼𝑗𝑗,𝑖𝑖|𝑃𝑃𝐷𝐷(𝐷𝐷𝑗𝑗,𝑖𝑖)~ 𝑁𝑁𝑒𝑒𝑓𝑓𝑛𝑛𝑓𝑓𝑢𝑢𝑏𝑏𝑏𝑏𝑖𝑖 (𝑃𝑃𝐷𝐷�𝐷𝐷𝑗𝑗,𝑖𝑖�) (21) 

Where PD indicates probability of detection. 

𝐷𝐷𝑂𝑂,𝑗𝑗,𝑖𝑖 = 𝐷𝐷𝐼𝐼𝑗𝑗,𝑖𝑖 .𝐷𝐷𝑀𝑀,𝑗𝑗,𝑖𝑖 (22) 

The reportability factor (that represents lower detection 
threshold of the ILI device) is defined as a binary indicator 
random variable, (𝑅𝑅𝑗𝑗,𝑖𝑖) (Eq. (23)). Production of this factor to 
the observed degradation measurement, (𝐷𝐷𝑂𝑂,𝑗𝑗,𝑖𝑖),  gives the 
degradation value reported by the inspection device (Eq. 
(24)).  

𝑅𝑅𝑗𝑗,𝑖𝑖�𝐷𝐷𝑂𝑂,𝑗𝑗,𝑖𝑖� 

= �
0   𝑖𝑖𝑓𝑓   𝐷𝐷𝑂𝑂,𝑗𝑗,𝑖𝑖 < 𝐼𝐼𝐼𝐼𝐼𝐼 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑑𝑑𝑒𝑒 𝑡𝑡ℎ𝑓𝑓𝑒𝑒𝑠𝑠ℎ𝑓𝑓𝑏𝑏𝑑𝑑
1   𝑖𝑖𝑓𝑓   𝐷𝐷𝑂𝑂,𝑗𝑗,𝑖𝑖 ≥ 𝐼𝐼𝐼𝐼𝐼𝐼 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑑𝑑𝑒𝑒 𝑡𝑡ℎ𝑓𝑓𝑒𝑒𝑠𝑠ℎ𝑓𝑓𝑏𝑏𝑑𝑑 

(23) 

𝐷𝐷𝑅𝑅,𝑗𝑗,𝑖𝑖 = 𝑅𝑅𝑗𝑗,𝑖𝑖 .𝐷𝐷𝑂𝑂,𝑗𝑗,𝑖𝑖  (24) 

Temporal uncertainties (level 3 in Figure 2) are modeled by 
considering the actual degradation at each inspection time as 
the summation of actual degradation at the previous 
inspection time and degradation increment between these two 
inspections. Because of two reasons, gamma process is an 
appropriate process to model the degradation increment 
behavior (Eq. (25)); independent degradation increments 
assumption (Van Noortwijk, 2009) and restriction that such 
increments must be positive.  

Δ𝐷𝐷𝑗𝑗 ,𝑖𝑖|Δα𝑗𝑗,𝑖𝑖 ,𝛽𝛽𝑗𝑗~𝑔𝑔𝑠𝑠𝑁𝑁𝑁𝑁𝑠𝑠(Δα𝑗𝑗,𝑖𝑖 ,𝛽𝛽𝑗𝑗) (25) 

Where Δα𝑗𝑗,𝑖𝑖  is the shape parameter and  𝛽𝛽𝑗𝑗  is the scale 
parameter of the gamma distribution given in Eq. (19).  

The shape parameter reflects the time dependency of the 
physics of the degradation process (level three of the 
uncertainty in Figure 2). By selecting a proper functional 
form for the shape parameter, different degradation processes 
can be modeled. Power law function (Eq. (26)) is a versatile 
function that can represent constant, increasing or decreasing 
degradation rate based on the exponent of the model.  

Δα𝑗𝑗,𝑖𝑖 = 𝜃𝜃1 ��𝑡𝑡𝑗𝑗,𝑖𝑖−1 + ∆𝑡𝑡𝑗𝑗,𝑖𝑖−1�
𝜃𝜃2 − �𝑡𝑡𝑗𝑗,𝑖𝑖−1�

𝜃𝜃2� (26) 

Where 𝜃𝜃1 and 𝜃𝜃2 are degradation model’s parameters that are 
related to epistemic uncertainty. 𝜃𝜃2 > 1 stands for an 
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increasing degradation process, 𝜃𝜃2 < 1  expresses a 
decreasing degradation process, and 𝜃𝜃2 = 1 represents a 
constant degradation process.  

The scale parameter of the gamma process is a positive 
location specific parameter that reflects the heterogeneity of 
the defects between the locations (level 2 of uncertainty in 
Figure 2). The location heterogeneity is represented by 𝑧𝑧𝑗𝑗, 𝑘𝑘 
and  𝜉𝜉𝑗𝑗 . 𝑧𝑧𝑗𝑗  are local covariates (e.g., pressure, temperature, 
pH), 𝑘𝑘 is a vector of cause and effect regression coefficients 
associated with  𝑧𝑧𝑗𝑗   and 𝜉𝜉𝑗𝑗  are local aleatory effects that 
cannot be explained by defined covariates (e.g. top of line 
corrosion).  

β𝑗𝑗 = 𝑒𝑒𝑥𝑥𝑝𝑝 ��𝑧𝑧𝑗𝑗�
𝑇𝑇𝑘𝑘 + 𝜉𝜉𝑗𝑗� (27) 

Figure 6 summarizes this hierarchical Bayesian framework. 
In this figure, 𝛿𝛿1 and 𝛿𝛿2 are prior distribution Parameters for 
local aleatory effect model. According to this framework, by 
assuming prior probability density functions for system-wide 
parameters (𝜃𝜃1,𝜃𝜃2, 𝛿𝛿1,𝛿𝛿2, 𝑘𝑘), the actual true degradation, 𝐷𝐷𝑗𝑗,𝑖𝑖, 
for 𝑗𝑗𝑡𝑡ℎ defect at 𝑖𝑖𝑡𝑡ℎ inspection time can be predicted. Then, as 
soon as inspection data (𝐷𝐷𝑅𝑅,𝑗𝑗,𝑖𝑖) become available (by knowing 

measurement error for each location and inspection time), the 
model’s parameters can be updated by using a Bayesian 
updating simulation techniques such as Markov chain Monte 
Carlo (MCMC). 

As it was explained briefly, this hierarchical framework can 
model different level of uncertainties in the degradation 
systems and also characteristic II of pitting corrosion can be 
modeled by selecting proper values for 𝜃𝜃1 and 𝜃𝜃2.  However, 
characteristic I is not addressed in this model directly.  

Zhang and Zhou (2013) modified the above framework by 
considering corrosion initiation time in their model and used 
homogeneous gamma process (𝜃𝜃2 = 1) to characterize the 
growth of the depth of corrosion defects. Zhang and Zhou 
(2013) used ILI data obtained in 2000, 2004 and 2007 for 62 
defects to estimate their model parameters and they validated 
their model by comparing the defects’ actual depths (obtained 
after excavation and field measurement) in 2010 with the 
corresponding depth predicted by their proposed growth 
model. This validation shows that 90% of the predicted 
depths fall within the region bounded by the two lines 
representing actual depth ±10% pipe wall thickness. 

Finally, two other works that used the similar Bayesian 
framework are discussed briefly. Zhang et al. (2013) used this 
framework by considering inverse Gaussian process (IGP) 
instead of homogeneous gamma process (HGP) to 
characterize the growth of the depth of corrosion defects. By 

applying this model to the same set of ILI corrosion data, they 
concluded that the predictions of the IGP-based model are 
negligibly different from those of the HGP-based model, but 
significantly better than random variable-based models. In 

Figure 6. Hierarchical Bayes framework for heterogeneous degradation, modified from (Maes, Dann, Breitung, & 
Brehm, 2008) 
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another work, Zhang and Zhou (2014) applied a similar 
Bayesian framework by using a Bayesian dynamic linear 
model (BDLM) and compared the results with their previous 
results based on HGP and IGP.  They showed that the 
absolute difference between predicted depths and 
corresponding field-measured depth is less than or equal to 
10 % pipe wall thickness for about 92% of the defects for 
BDLM, while this value for IGP and HGP is about 90% of 
the defects. This model is validated against a small number 
of corrosion data and it needs to be validated with larger data 
set to be able to be used it in practical application (Zhang & 
Zhou, 2014).  

3. DISCUSSIONS 

Now we address the question of “when should each model be 
used?” To answer this question, two criteria are defined: 
appropriateness and practicality. As it is explained in Section 
1, an appropriate pitting corrosion growth model should 
consider four levels of uncertainty and also two well-known 
characteristics of pitting corrosion growing behavior: depth 
and time dependency of pit growth rate. The practicality 
criterion, indicates the level of knowledge that is required to 
perform each model. Table 1 summarizes this evaluation for 
those models that are discussed in this paper. 

The first category in this table corresponds to linear random 
variable-based model which is the simplest probabilistic 
approach and also is the most commonly used approach in 
the industry that usually overestimates the pit growth rate. 
The second category corresponds to non-linear random 
variable-based model which is the one that considers the 
well-known non-linear behavior (power law function with a 
less than one positive exponent) of pitting corrosion process. 
None of these random variable-based models consider spatial 
heterogeneity, temporal variation, and measurement errors. 
They also do not take into account the depth dependency of 
the pitting corrosion rate. 

The third and fourth categories correspond to linear and non-
linear stochastic process-based models that consider the 
temporal variability of pitting corrosion process. As it was 
discussed in Sections 2.2.1 and 2.2.2, these models are 
combinations of PSWP and linear and non-linear random 
variable-based models. The two stochastic process-based 
models also do not consider spatial heterogeneity and 
measurement errors. They also do not take into account the 
depth dependency of the pitting corrosion rate. 
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Table 1: Evaluation of different commonly used 
probabilistic data-driven pitting corrosion growth models in 

oil and gas pipelines 

The fifth category corresponds to Markov process-based 
models. In these models, the main issue involves extracting 
proper transition rates between states. Markov process based-
models consider epistemic uncertainty, temporal variability, 
non-linearity and also depth dependency of the pitting 
corrosion rates.  However, the spatial heterogeneity and 
measurement uncertainties are not addressed properly in 
Markov process-based models and it is not straightforward to 
update these models by Bayesian inference in case of new 
imperfect ILI data.  

The last category of this table corresponds to the gamma 
process-based models which are the most versatile models 
that can address different levels of uncertainties. Besides, 
they can model the non-linearity in the pitting corrosion 
growth process. These models can also be updated properly 
by Bayesian inference in case of new imperfect ILI data. 
However, depth-dependency has not been considered directly 
in these models. In the first six columns of Table 1 
appropriateness of the abovementioned categories are 
evaluated.  

The last column of Table 1 is allocated to practicality 
criterion. In this column, PI stands for Practicality Index. PI 
1 is assigned to the first two categories and it means that these 
models can be developed by the common field engineers that 
are familiar with regression analysis using common 
application tools like Excel.  PI 2 is assigned to the next two 
categories and it means that these models need more 
advanced knowledge of statistics such as PSWP. PI 3 is 
assigned to the last two categories and it needs a deep 
understanding of Markov process and gamma process. 
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4. CONCLUSION 

This paper reviews various pitting corrosion degradation 
models for PHM analysis. Degradation model is a key 
element of the PHM approach to predict the remaining useful 
life of a degrading system. Despite a large number of studies 
that have tried to find a comprehensive pitting corrosion 
growth model (degradation model), there is no universally 
accepted model that is able to predict the pitting corrosion 
growth properly for all occasions. Among available physics-
of-failure and data-driven based pitting corrosion growth 
models, this review paper focused on the latter as they are 
more suitable to describe pitting corrosion behavior because 
of the complexity and inherent randomness of pitting 
corrosion over time. The reason is that pitting corrosion 
process is a stochastic process that depends on a large number 
of dependent and independent factors (epistemic 
uncertainties); moreover, this process has temporal and 
spatial heterogeneity; also, inspection uncertainties 
(measurement errors, probability of detection and 
reportability errors) add another level of uncertainty to the 
pitting corrosion growth estimation.  

In addition to these different levels of uncertainties, an 
appropriate pitting corrosion growth model must be able to 
take into account the two other well-known characteristics of 
pitting corrosion; the corrosion rate of a deeper pit is greater 
than the corrosion rate of a shallower one, and for a single pit, 
the corrosion rate declines over time following a power-law 
function with a less than one positive exponent. This paper 
discussed the appropriateness of some probabilistic data-
driven based models that are commonly used to predict 
pitting corrosion growth. In addition to the appropriateness, 
the practicality of these models is also discussed in this paper. 
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