
SOFTWARE-ENABLED ADAPTIVE MODE TRANSITION CONTROL
FOR AUTONOMOUS UNMANNED VEHICLES

F. Rufus, B. Heck and G. Vachtsevanos
School of Electrical & Computer Engineering,

Georgia Institute of Technology
Atlanta, Georgia 30332-0250

Abstract
Typically, complex large-scale systems such

as unmanned aerial vehicles are required to operate
in a finite number of operational modes that
necessitate robust, stable and smooth transitions
between them. In this work, an online adaptation
scheme is proposed for adapting the parameters of
mode transition controllers designed off-line via the
method of blending local mode controllers. The
adaptive mode transition control algorithm is
enabled via a software architecture that
accommodates functionalities such as dynamic
reconfigurability, plug and play extensibility,
interoperability and openness. Through its
reconfiguration management, virtual resource
network and real-time distributed computing, it
allows the UAV to execute agile and extreme
performance maneuvers.

Introduction
Complex large-scale systems such as

unmanned aerial vehicles and industrial processes
are demanded to possess the intelligence required
to behave in an autonomous manner under
uncertain environmental conditions. Typically,
these systems are required to operate in a finite
number of operational modes that require robust,
stable and smooth transitions between them. A
local operational mode is considered to be a region
in the system's state space in which the system
exhibits quasi steady-state behavior. And a mode
transition (or mode-to-mode) controller refers to a
controller that transitions a system from a start
mode of operation to the goal mode. The problem
of transitioning between two operational modes can
be solved by non-adaptive techniques such as gain
scheduling [1,2], sliding mode control [3,4] and the
method of blending local mode controllers [SI.

However, when the system to be controlled differs
significantly from the nominal system used in the
design methods above, degraded tracking
performance of the desired transition trajectory is
to be expected.

In this work, an online adaptation scheme is
proposed for adapting the parameters of mode
transition controllers designed off-line via the
method of blending local mode controllers
(BLMC). The adaptation scheme is composed of a
desired transition model, an active plant model and
an active controller model, which is the mode
transition controller to be adapted. The desired
transition model, the active plant model and the
blending gains portion of the active controller
model are represented via a fuzzy neural network
construct discussed in [6]. All three fuzzy neural
models are trained off-line while the latter two
models are adapted online. The active plant model
is adapted via structure and parameter learning to
capture the inputloutput behavior of the nonlinear
system to be controlled. The new blending gains to
be developed by the mode transition controller are
determined from the control sensitivity matrix and
the predicted output of the active plant model. A
software substrate used for integrating adaptive
mode transition controllers with other system
components is discussed in the last section of this
paper.

Adaptive Mode Transition Control
Consider a large-scale dynamical system that

is composed of N, subsystems Si,
where each subsystem represents an operational
mode of the system. The state equation for the i"
subsystem is given by:

i = 1,2,.. ., N , ,

ii = h (x i , u i) , xi E Rfli, ui E R"'

0-7803-6395-7/00/$10.00 02000 IEEE l.E.1-1

Let mode, and mode, denote the p" and dh
subsystem, respectively. How do we design a
controller that stably and smoothly transitions a
system from mode, to mode,?

Off-line Control Design

as the BLMC approach was developed to design
mode transition controllers. This approach for
designing mode transition controller uses the
aggregated states of the start and goal modes, while
the output vector of the mode transition controller
is determined by blending the individual output
vector of the start and goal mode controllers. The
following is an outline of the BLMC approach:

In [5] , an off-line design methodology known

Step 1: Design regulators for the start and
goal modes such that initial states are driven
to the equilibrium of the respective modes.
Steu 2: Model the dynamics that correspond
to the aggregated states and controls of the
start and goal mode so that a transitional
path from the start mode to the goal mode
can be determined.
Step 3: Determine an optimal transitional
path from the equilibrium state of the start
mode to the equilibrium state of the goal
mode by solving a nonlinear optimal control
problem.
Step 4: Determine the desired blending
gains using the desired state and control
trajectory determined from step 3.
Step 5 : Realize the blending gains via a
fuzzy neural network construct proposed in
[61.

The structure of'a mode transition controller
designed via the BLMC method is shown Figure 1,
where x,, is the aggregated state vector of x, and

xq ; up, is the aggregated control vector of up and

U, ; x p and x, denote the state vectors of mode,

and mode,, respectively; up and U, denote the
control input vectors of mode, and mode,,
respectively; x i and xi denote the equilibrium of

mode, and mode,, respectively; K p and Kq are the

blending matrices which are functions of xpq .

Figure 1. Mode transition controller
structure.

Online Adaptation Scheme

proposed for the online adaptation of the mode
transition controllers designed off-line via the
BLMC approach. The control objective is to adapt
the blending matrices such that the plant output
vector tracks the output vector of a desired
transition model. In order to apply the discrete-
time controller scheme to the continuous-time
system, it is assumed that the sample rate has been
appropriately selected. Figure 2 shows the
configuration for indirect adaptive mode transition
control. The adaptation scheme is composed of
five components: a desired transition model, an
active plant model, a plant adaptation mechanism,
an active controller model and a controller
adaptation mechanism.

In this section, an adaptation scheme is

1
XW

Figure 2. Configuration for indirect adaptive
mode transition control

1.E.1-2

Desired Transition Model
A fuzzy neural model representation of the

desired transition trajectory is determined off-line.

Active Plant Model
A fuzzy neural model of the input/output

relationship of the nonlinear plant along the desired
transition is determined by off-line training. Also,
the linear model information along the desired
trajectory is incorporated into the consequent part
of the fuzzy neural model. Afterwards, the active
plant model is adapted online via the plant
adaptation mechanism.

Plant Adaptation Mechanism
The active plant model is adapted online to

account for plant variations on a real-time basis. At
time instant t, , the adaptation of the active plant
model is accomplished by performing
structure/parameter learning on the basis of the
current inputloutput data of the system to be
controlled.

Active Controller Model
The active controller model is the mode

transition controller determined off-line via the
BLMC approach. The blending gains of the active
controller model are adapted online using the
controller adaptation mechanism.

Controller Adaptation Mechanism
Let ACM and APM denote the active

controller model and the active plant model,
respectively. Let upq(t,) be the currently
developed control input by the ACM which
corresponds to xPq(t,) . Suppose that ~ : ~ (t , + ~)

represents the desired trajectory at tk+, provided by
the desired transition model. The steps of the
controller adaptation mechanism algorithm are:

Step 1: Apply ACM to x,,(t,) and produce
the current initial estimate of the control
input upq (t ,) .
Step 2: Input upq(t,) and xPq(t,) to APM

and produce ipq (t ,+ l) . Calculate

' i q (t k + l) = x : q (t k + l) - x p q (t k + l) using the

predictive one-step-ahead output ipq (tkcl)

in place of the unavailable output xpq(t,+l) .

Step 3: The true control sensitivity matrix

D(xp9(t,) ,up9(t ,)) is approximated via the

APM's incremental control matrix D.
When the APM is not sufficiently activated

by the input (x, (t,), upq (t,)), the control

sensitivity information contained in the
strongest fired rule' s consequent parameters
is used to determine B .
Step 4: Compute the weighted least squares
optimal control law,

,.

U;¶ (4 1 = u p q (4)
+[D~ .Q. D]' D~ .Q i;q (t,+l) *

Afterwards, calculate the desired blending
weights kiq(t,) ,
Step 5: Train ACM to capture desired
blending weights kiq (t,) given current

input x,(t,). Note that parameter learning
with local model information is used to train
the ACM.
Step 6: Put t, t t,+l and perform the same
procedure at the next time t k + l .

Hover to Forward Flight Example
Model of Helicopter's Forward Dynamics
The proposed adaptation scheme will be

illustrated on the following model representing the
longitudinal channel dynamics of an Apache
helicopter constrained to have no vertical motion;
only longitudinal and pitch rotation motions are
allowed [5] :

x = x, , + x, (i - irrim) + x, (e - e,,)

M = M,,, + M i (x - &,)+ M e (e - e r n m)

+ X, (6, - Se,rrim)

+ ~6~ (s e - 'e,trim)

1.E.1-3

.. M e=-
1,

where x, 8 and 6, represent the forward
acceleration (ft/s2), pitch angle acceleration (rads2)
and longitudinal cyclic input (deg), respectively. X
represent the aerodynamic force along the “X axis”
and M represent the pitching moment about the “Y
axis”. Figure 3 shows the axis system of the
helicopter with respect to the sideview. The

M , , M , , XI , , , 8,,, , 6,,,,,, are functions of x .
X, , , and M,,, are the trim values of the
aerodynamic force X and the pitching moment
M , respectively. The variables X , ,
X , , X , , M I , , , M , and M , are the partial

parameters XI, , 9 x , 9 x , Y x , 7 MI, , 9 M , 9

derivatives of X and M with respect to x , 8
and 6,, respectively. The physical constants m
and I , are the mass of the helicopter and the
moment of inertia along the Y axis. The state
vector of the helicopter model is

[XI X 2 x3 x , p = x e er . Itis
assumed that the output vector of the model is the
same as the state vector.

7 G’W‘
3
Z

Figure 3.
System

Side view of Helicopter’s Axis

Hover to Forward Flight Mode Controller
In [SI, a hover to forward flight mode

controller was designed via the BLMC approach.
The controller was designed such that the closed-
loop system transitions from
[O.OOOO 0.0000 0.1008 0.00003’ to

[92.8278 0.0000 0.0402 0.0OOOr in
minimum time with the following constraints:

- 1 .OOOO I i I 94.0000

- 2.5000 I X I 20.0000

- 0.7000 I e I 0.70oo

- 0.6000 5 6 50.6000

- 6.5000 5 6, 5 4.5000.

The proposed adaptation scheme proposed is
applied to the mode transition controller mentioned
above. The sample time of T, = 0.05s is chosen
for the adaptation scheme. The desired minimum
time trajectory and control are resampled such that
they occur every T, :

Z d (t k) and Z d (t k) for k = O , ..., N

where Z d (t k) = [i i! 8 SI‘, G d (f k) =[de],
tk+l - t, = T, , t, 2 t f and t, - t f < T, .
Afterwards, the desired transition model of the
following mapping is determined off-line:

Z d (t k) + Z d (t k + l) , k = 0, ..., N .

The active plant model is initially determined off-
line for the following mapping:

k = 0, ..., N

Also, the linear model information defined at

(. ? : q (t k) y i i : q (t k)) for k = O , ..., N ,

are incorporated into the consequent part of active
plant model. The plant adaptation mechanism
adapts the active plant model with the following
structure learning parameters:

6 = 0.2, p = 0.5 and

= [0.20 0.20 0.05 0.05 0.201

1 .E. 1-4

where 6 , p and 0' are the lower threshold for
membership value, the desired overlap degree
between membership functions and the upper limit
of the width of each membership function,
respectively. The active controller model is the
hover to forward flight mode controller determined
previously. The controller adaptation mechanism
adapts the blending weights of the active controller
model with the following structure learning
parameters:

6 = 0.2, p = 0.5 and

0" = [CT; .* . 43
= [0.20 0.20 0.05 0.051

Simulation Results

trajectories. For the nominal mode transition
controller, Figure 6 show the mean squared error
from the desired transition trajectory for wind
disturbances and parametric changes of X , . For
small parametric changes and wind disturbances,
the controller exhibits good tracking performance
of the desired transition trajectory. However, as the
magnitude of the parametric changes and wind
disturbances increase the tracking performance of
the controller degrades. Figure 7 show mean
squared error from the desired transition trajectory
for wind disturbances and parametric changes of
X , , for the least squares adaptation of the
nominal mode transition controller. As expected, if
the approximate plant accurately captures the local
model information and the inputloutput behavior of
the system to be controlled, the adapted controller
exhibits excellent tracking performance when
encountering parametric changes and wind
disturbances.

Figures 4-5 show the desired x, x , 6 and 9

.
0

. . . . 7 - - - - 4 - - - - - , - - - -

Y

2 4 6 8 10
lime (6)

. 15

. . . , , _,
; 5 .
g 0

0 2 4 6 8 10
lime (s)

Figure4. Plotsof desired x and Jt
trajectories

0.2, I

Time (5)

0.6 I - 1

2 4 6 8 10
4.6

lime (S)

Figure 5. Plots of desired 6 and 8
trajectories

1.E.1-5

2 0 -10 0 10 20 30 40
Percentage Change in XS,

Wind Disturbance (Ws)

Figure 6. Plots of mean squared errors for
controller designed via BLMC approach

Least Squares Adaptatb of Nominal Mode Transition Controller
with &prodmate Plant Knowledge .

. . _ I _ . . . , . . . _ I _ . . - 1

-20 -10 0 10 20 30 40
Percentage Change in X,

n c - . - - . . -
1 1 1 , 1 1 1

1"

_ , _ , . . _ , _ . _ , _ . _ , _ . _, b g 0 5
iiz 2: O 4

g j O3
;$ 0 2

f : 0 1

, I I
, * , < I ,

, I , , ,

3
0 -20 -15 -10 -5 0 5 10 15 20

Wind Disturbance (Ws)

Figure 7. Plots of mean squared errors for
adaptation with approximate plant knowledge

The Enabling Software Technology
The adaptive mode transition control

algorithm described in this paper is being enabled
by an emerging software architecture, called the
Open Control Platform (OCP). The OCP will be
used to integrate the adaptive mode transition
control algorithm with a wide variety of

components needed to achieve autonomous flight,
such as the mode selector module, the mission
planning module, the situation awareness module
and the fault tolerant control module. The OCP is
being designed to support the following capabilities
that are required to accommodate the operational
and environmental changes inherent in
autonomous, extreme-performance flight:

0 Plug and play extensibility: it should be
easy to insert new technology, such as new
control algorithms or sensor technology into
the system architecture without redesigning
the components already in the system.

heterogeneous environments: control
algorithms and other components may be
running on different processors, using
different programming languages, hardware
platforms, and network protocols, most
likely over wireless links. We need to
provide real-time communication among
these distributed components while dealing
with tight constraints on bandwidth,
response time, and reliability.
Dynamic reconfiguration: We need to
support on-line switching of algorithmic
components and rapid redirection of the
interconnections among them, as well as
changing the priorities at which information
is flowing.
Real-time quality of service (00s)
guarantees are needed to enable predictable
local and distributed communication for
control and data acquisition. Adaptive
scheduling for optimum resource utilization
is essential.

Interoperability in distributed,

Real-time Distributed Computing

Broker Architecture (CORBA) [7] to achieve
seamless distributed communication between
components running on different processors, using
different programming languages, hardware
platforms and network protocols while dealing with
tight constraints on bandwidth, response time and
reliability. Components interact through an Object
Request Broker (ORB). Using an ORB, a client
can transparently invoke a method on a server
object which can be on the same machine or across

The OCP uses the Common Object Request

1.E.1-6

a network. The ORB intercepts the call and is
responsible for finding an object that can
implement the request, pass it the parameters,
invoke its method and return the results. The client
does not have to be aware of where the object is
located, its programming language, its operating
system or any other system aspects that are not part
of an object’s interface. Therefore, the ORB
provides interoperability between applications on
different machines in heterogeneous distributed
environments and seamlessly interconnects
multiple object systems.

components to interact without being tightly
coupled. This eases architectural evolution and
facilitates on-line reconfiguration. The event
service provides a communication abstraction,
called an event channel, similar to a bus.
Components that generate data (“suppliers”) or use
data (“consumers”) connect to the event channel
and the suppliers “publish” certain data event types
while the consumers “subscribe” to certain event
types.

The event channel acts as a Mediator [9]
between components so that their interconnections
are flexible. The event channel provides the level
of abstraction needed by mediating information
flow between suppliers and consumers. When a
new type of sensor is added to the system or
replaces another type of sensor, for example, it can
be connected to the event channel to publish its
type of data and all consumers subscribed to that
data will receive it. The event channel helps to
minimize the architectural impact of switching
components by localizing the changes needed.

The OCP also allows control system
developers to specify real-time QoS requirements
for components (such as event frequency, period
and priority). The event service used by the OCP
provides QoS specification and enforcement
through preemptive real-time scheduling of all
system components, including processors, memory
units, network interfaces, and network bandwidth.
This capability is essential in pushing the limits of
controlling UAVs while maintaining efficient
resource utilization.

The OCP uses an event service [SI that enables

Virtual Resource Network
The virtual resource network (VRN) is an

abstraction used to simplify configuration and
reconfiguration of system components during a
mission. The overall objective in configuring
control software for a mission is to define the
interactions between the various components in the
system in a systematic fashion, where the
components of the system are treated as network
resources at multiple levels of granularity. For
example, in the UAV application, reconfiguration
could be at the mission level, the sensor level or
anywhere in between.

The ability of these resources to be flexibly
interchanged without changing other components in
the system comes from the standardization of the
interfaces for each component. The standardization
of the interfaces are achieved using the CORBA
Interface Definition Language [7]. It is also
possible for any other resource on the network to
use a resource address to connect directly and
interact with the resource, irrespective of where it
exists on the network. Thus, all distributed
computing specifics are abstracted out via the
VRN. Also, the VRN is used to define how the
resources interact, by defining the input/output
relationships among the components.

Reconfiguration Management
The software infrastructure supports a loose

coupling between control system components to
provide flexibility, extensibility and reuse. The
VRN provides a layer of abstraction for easily
specifying configurations and reconfigurations with
localized changes to the VRN representation.
However, a configuration management mechanism
is needed to ensure that the configurations,
specified in the VRN, are valid and consistent with
functional and nonfunctional requirements (such as
performance, security and reliability). Moreover, it
is critical that changes to the configuration maintain
overall system integrity by being gIobally
coordinated and consistent.

The OCP takes an architecture-oriented
approach to reconfiguration management by
identifying and exploiting system configuration
patterns and reconfiguration strategies specific to

1 .E.1-7

the real-time controls domain. Reconfiguration of
control systems will follow standard strategies for
making changes without violating reliability, safety
and consistency constraints. These strategies may
dictate how quickly one algorithm can be switched
for another or whether a redundant component
needs to work concurrently with the component is it
replacing before the swap occurs to allow the new
component to “come up to speed”. For example,
the adaptive mode transition control algorithm
discussed in this paper may be the primary
mechanism used in a control system to gracefully
transition between modes. However, it has a
certain operating range that on rare occasions may
be exceeded. In these cases, we may want the
control system to fall back on a traditional gain
scheduling control algorithm which transitions
through a fixed trajectory of local controllers. It
may not be possible for the original mode
transitioning algorithm to be switched abruptly to
the gain scheduling one. Instead, we may need a
gradual switch from the primary control algorithm
to the other.

A beneficial synergy exists in the concurrent
development of the mode control algorithms and of
the OCP. While the adaptive mode transition
control algorithm is enabled by the OCP, it is also
driving the underlying component-based software
technology forward by demanding new OCP
capabilities to support on-line customization and
extreme performance.

Conclusions
An adaptation scheme is proposed for the

online adaptation of mode transition controllers
designed via the blending local mode controllers
approach. And, a software architecture used for
integrating the control algorithm with other system
components is discussed.

Acknowledgements
The authors would like to thank Dr. Helen

Gill, DARPA, and Mr. Bill Koenig, AFRL, for the
sponsorship of this research under DARPA contract
number F33615-98-C-1341. In addition, the
authors would like to thank their CO-P.I.’s on this
research project: Drs. Daniel Schrage and J.V.R.
Prasad, School of Aerospace Engineering, Georgia
Tech; Dr. Linda Wills, School of Electrical and

Computer Engineering, Georgia Tech; graduate
students Suresh Kannan, Sam Sander, and Ilkay
Yavrucuk; and Mr. Bryan Doerr and Mr. Brian
Mendel, Boeing Phantom Works.

References
[I] Dimiter, D., R. Palm, U. Rehfuess, 1996, A
Takagi-Sugeno Fuzzy Gain-Scheduler, Vol. 2,
IEEE International Conference on Fuzzy Systems,

[2] Rugh, W.J., 1991, Analytical Framework for
Gain Scheduling, Vol. 11, IEEE Control Systems
Magazine, pp. 79-84.

[3] Slotine, J.E., 1984, Sliding Controller Design
for Nonlinear Systems, Vol. 40, International
Journal of Control, pp. 421-434.

[4] Jalili, N., N. Olgac, 1998, Time-Optimal/Sliding
Mode Control Implementation for Robust Tracking
of Uncertain Flexible Structures, Vol. 8, No. 2,
Mechatronics, pp. 12 1 - 142.

[5] Rufus, F., S. Clements, S. Sander, B. Heck, L.
Wills, G. Vachtsevanos, 1999, Software-Enabled
Control Technologies for Autonomous Aerial
Vehicles, Vol. 2, 18th Digital Avionics System
Conference, pp. 6.A.5-1 - 6.A.5-8.

[6] Theocharis, J., G. Vachtsevanos, 1996,
Adaptive Fuzzy Neural Networks as Identifiers of
Discrete-Time Nonlinear Dynamic Systems, Vol.
17, Journal of Intelligent and Robotic Systems, pp.

[7] Object Management Group, December 1998,
CORBA 2.2 Common Object Services Specification,
httmI/www.omg.org.

[8] Levine, D., Sumedh Mungee, Doug Schmidt,
April 1998, The design and performance of real-
time object request brokers, Vol. 2 1, Computer
Communications.

[9] Johnson, R., E. Gamma, R. Helm, J. Vlissides,
1998, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

pp. 1053-1059.

119-168.

1.E.1-8

http://httmI/www.omg.org

