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Abstract 
Typically, complex large-scale systems such 

as unmanned aerial vehicles are required to operate 
in a finite number of operational modes that 
necessitate robust, stable and smooth transitions 
between them. In this work, an online adaptation 
scheme is proposed for adapting the parameters of 
mode transition controllers designed off-line via the 
method of blending local mode controllers. The 
adaptive mode transition control algorithm is 
enabled via a software architecture that 
accommodates functionalities such as dynamic 
reconfigurability, plug and play extensibility, 
interoperability and openness. Through its 
reconfiguration management, virtual resource 
network and real-time distributed computing, it 
allows the UAV to execute agile and extreme 
performance maneuvers. 

Introduction 
Complex large-scale systems such as 

unmanned aerial vehicles and industrial processes 
are demanded to possess the intelligence required 
to behave in an autonomous manner under 
uncertain environmental conditions. Typically, 
these systems are required to operate in a finite 
number of operational modes that require robust, 
stable and smooth transitions between them. A 
local operational mode is considered to be a region 
in the system's state space in which the system 
exhibits quasi steady-state behavior. And a mode 
transition (or mode-to-mode) controller refers to a 
controller that transitions a system from a start 
mode of operation to the goal mode. The problem 
of transitioning between two operational modes can 
be solved by non-adaptive techniques such as gain 
scheduling [1,2], sliding mode control [3,4] and the 
method of blending local mode controllers [SI. 

However, when the system to be controlled differs 
significantly from the nominal system used in the 
design methods above, degraded tracking 
performance of the desired transition trajectory is 
to be expected. 

In this work, an online adaptation scheme is 
proposed for adapting the parameters of mode 
transition controllers designed off-line via the 
method of blending local mode controllers 
(BLMC). The adaptation scheme is composed of a 
desired transition model, an active plant model and 
an active controller model, which is the mode 
transition controller to be adapted. The desired 
transition model, the active plant model and the 
blending gains portion of the active controller 
model are represented via a fuzzy neural network 
construct discussed in [6]. All three fuzzy neural 
models are trained off-line while the latter two 
models are adapted online. The active plant model 
is adapted via structure and parameter learning to 
capture the inputloutput behavior of the nonlinear 
system to be controlled. The new blending gains to 
be developed by the mode transition controller are 
determined from the control sensitivity matrix and 
the predicted output of the active plant model. A 
software substrate used for integrating adaptive 
mode transition controllers with other system 
components is discussed in the last section of this 
paper. 

Adaptive Mode Transition Control 
Consider a large-scale dynamical system that 

is composed of N, subsystems Si, 
where each subsystem represents an operational 
mode of the system. The state equation for the i" 
subsystem is given by: 

i = 1,2,.. ., N ,  , 

ii = h ( x i , u i ) ,  xi  E Rfli, ui E R"' 
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Let mode, and mode, denote the p" and dh 
subsystem, respectively. How do we design a 
controller that stably and smoothly transitions a 
system from mode, to mode,? 

Off-line Control Design 

as the BLMC approach was developed to design 
mode transition controllers. This approach for 
designing mode transition controller uses the 
aggregated states of the start and goal modes, while 
the output vector of the mode transition controller 
is determined by blending the individual output 
vector of the start and goal mode controllers. The 
following is an outline of the BLMC approach: 

In [5 ] ,  an off-line design methodology known 

Step 1: Design regulators for the start and 
goal modes such that initial states are driven 
to the equilibrium of the respective modes. 
Steu 2: Model the dynamics that correspond 
to the aggregated states and controls of the 
start and goal mode so that a transitional 
path from the start mode to the goal mode 
can be determined. 
Step 3: Determine an optimal transitional 
path from the equilibrium state of the start 
mode to the equilibrium state of the goal 
mode by solving a nonlinear optimal control 
problem. 
Step 4: Determine the desired blending 
gains using the desired state and control 
trajectory determined from step 3. 
Step 5 :  Realize the blending gains via a 
fuzzy neural network construct proposed in 
[61. 

The structure of'a mode transition controller 
designed via the BLMC method is shown Figure 1, 
where x,, is the aggregated state vector of x, and 

xq ; up, is the aggregated control vector of up and 

U, ; x p  and x, denote the state vectors of mode, 

and mode,, respectively; up and U, denote the 
control input vectors of mode, and mode,, 
respectively; x i  and xi denote the equilibrium of 

mode, and mode,, respectively; K p  and Kq are the 

blending matrices which are functions of xpq . 

Figure 1. Mode transition controller 
structure. 

Online Adaptation Scheme 

proposed for the online adaptation of the mode 
transition controllers designed off-line via the 
BLMC approach. The control objective is to adapt 
the blending matrices such that the plant output 
vector tracks the output vector of a desired 
transition model. In order to apply the discrete- 
time controller scheme to the continuous-time 
system, it is assumed that the sample rate has been 
appropriately selected. Figure 2 shows the 
configuration for indirect adaptive mode transition 
control. The adaptation scheme is composed of 
five components: a desired transition model, an 
active plant model, a plant adaptation mechanism, 
an active controller model and a controller 
adaptation mechanism. 

In this section, an adaptation scheme is 

1 
XW 

Figure 2. Configuration for indirect adaptive 
mode transition control 
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Desired Transition Model 
A fuzzy neural model representation of the 

desired transition trajectory is determined off-line. 

Active Plant Model 
A fuzzy neural model of the input/output 

relationship of the nonlinear plant along the desired 
transition is determined by off-line training. Also, 
the linear model information along the desired 
trajectory is incorporated into the consequent part 
of the fuzzy neural model. Afterwards, the active 
plant model is adapted online via the plant 
adaptation mechanism. 

Plant Adaptation Mechanism 
The active plant model is adapted online to 

account for plant variations on a real-time basis. At 
time instant t, , the adaptation of the active plant 
model is accomplished by performing 
structure/parameter learning on the basis of the 
current inputloutput data of the system to be 
controlled. 

Active Controller Model 
The active controller model is the mode 

transition controller determined off-line via the 
BLMC approach. The blending gains of the active 
controller model are adapted online using the 
controller adaptation mechanism. 

Controller Adaptation Mechanism 
Let ACM and APM denote the active 

controller model and the active plant model, 
respectively. Let upq(t,) be the currently 
developed control input by the ACM which 
corresponds to xPq(t,) .  Suppose that ~ : ~ ( t , + ~ )  

represents the desired trajectory at tk+,  provided by 
the desired transition model. The steps of the 
controller adaptation mechanism algorithm are: 

Step 1: Apply ACM to x,,(t,) and produce 
the current initial estimate of the control 
input upq ( t ,  ) . 
Step 2: Input upq(t,) and xPq(t,)  to APM 

and produce ipq ( t ,+ l ) .  Calculate 

' i q ( t k + l ) =  x : q ( t k + l ) - x p q ( t k + l )  using the 

predictive one-step-ahead output ipq (tkcl) 

in place of the unavailable output xpq(t,+l) .  

Step 3:  The true control sensitivity matrix 

D(xp9(t,) ,up9(t , ) )  is approximated via the 

APM's incremental control matrix D. 
When the APM is not sufficiently activated 

by the input (x,  ( t, ), upq ( t, )), the control 

sensitivity information contained in the 
strongest fired rule' s consequent parameters 
is used to determine B .  
Step 4: Compute the weighted least squares 
optimal control law, 

,. 

U;¶ (4 1 = u p q  (4 ) 
+[ D~ .Q. D]' D~ .Q i;q (t,+l ) *  

Afterwards, calculate the desired blending 
weights kiq( t,) , 
Step 5: Train ACM to capture desired 
blending weights kiq ( t, ) given current 

input x,(t,). Note that parameter learning 
with local model information is used to train 
the ACM. 
Step 6: Put t, t t,+l and perform the same 
procedure at the next time t k + l .  

Hover to Forward Flight Example 
Model of Helicopter's Forward Dynamics 
The proposed adaptation scheme will be 

illustrated on the following model representing the 
longitudinal channel dynamics of an Apache 
helicopter constrained to have no vertical motion; 
only longitudinal and pitch rotation motions are 
allowed [ 5 ] :  

x = x, ,  + x, (i - irrim ) + x, (e - e,,) 

M = M,,, + M i  (x - &,)+ M e  (e - e r n m )  

+ X, (6, - Se,rrim ) 

+ ~6~ ( s e  - 'e,trim ) 
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.. M e=- 
1, 

where x, 8 and 6, represent the forward 
acceleration (ft/s2), pitch angle acceleration (rads2) 
and longitudinal cyclic input (deg), respectively. X 
represent the aerodynamic force along the “X axis” 
and M represent the pitching moment about the “Y 
axis”. Figure 3 shows the axis system of the 
helicopter with respect to the sideview. The 

M ,  , M ,  , XI , ,  , 8,,, , 6,,,,,, are functions of x . 
X, , ,  and M,,,  are the trim values of the 
aerodynamic force X and the pitching moment 
M , respectively. The variables X ,  , 
X ,  , X ,  , M I , ,  , M ,  and M ,  are the partial 

parameters XI, ,  9 x ,  9 x ,  Y x ,  7 MI, ,  9 M ,  9 

derivatives of X and M with respect to x ,  8 
and 6,, respectively. The physical constants m 
and I ,  are the mass of the helicopter and the 
moment of inertia along the Y axis. The state 
vector of the helicopter model is 

[XI X 2  x3 x , p  = x e er .  Itis 
assumed that the output vector of the model is the 
same as the state vector. 

7 G’W‘ 
3 
Z 

Figure 3. 
System 

Side view of Helicopter’s Axis 

Hover to Forward Flight Mode Controller 
In [SI, a hover to forward flight mode 

controller was designed via the BLMC approach. 
The controller was designed such that the closed- 
loop system transitions from 
[O.OOOO 0.0000 0.1008 0.00003’ to 

[92.8278 0.0000 0.0402 0.0OOOr in 
minimum time with the following constraints: 

- 1 .OOOO I i I 94.0000 

- 2.5000 I X I 20.0000 

- 0.7000 I e I 0.70oo 

- 0.6000 5 6  50.6000 

- 6.5000 5 6,  5 4.5000. 

The proposed adaptation scheme proposed is 
applied to the mode transition controller mentioned 
above. The sample time of T, = 0.05s is chosen 
for the adaptation scheme. The desired minimum 
time trajectory and control are resampled such that 
they occur every T, : 

Z d ( t k )  and Z d ( t k )  for k = O ,  ..., N 

where Z d ( t k )  = [i i! 8 SI‘, G d ( f k )  =[de], 
tk+l - t, = T, ,  t, 2 t f  and t, - t f  < T, . 
Afterwards, the desired transition model of the 
following mapping is determined off-line: 

Z d ( t k ) +  Z d ( t k + l ) ,  k = 0, ..., N .  

The active plant model is initially determined off- 
line for the following mapping: 

k = 0, ..., N 

Also, the linear model information defined at 

( . ? : q ( t k ) y i i : q ( t k ) )  for k = O ,  ..., N ,  

are incorporated into the consequent part of active 
plant model. The plant adaptation mechanism 
adapts the active plant model with the following 
structure learning parameters: 

6 = 0.2, p = 0.5 and 

= [0.20 0.20 0.05 0.05 0.201 
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where 6 ,  p and 0' are the lower threshold for 
membership value, the desired overlap degree 
between membership functions and the upper limit 
of the width of each membership function, 
respectively. The active controller model is the 
hover to forward flight mode controller determined 
previously. The controller adaptation mechanism 
adapts the blending weights of the active controller 
model with the following structure learning 
parameters: 

6 = 0.2, p = 0.5 and 

0" = [CT; .* .  43 
= [0.20 0.20 0.05 0.051 

Simulation Results 

trajectories. For the nominal mode transition 
controller, Figure 6 show the mean squared error 
from the desired transition trajectory for wind 
disturbances and parametric changes of X ,  . For 
small parametric changes and wind disturbances, 
the controller exhibits good tracking performance 
of the desired transition trajectory. However, as the 
magnitude of the parametric changes and wind 
disturbances increase the tracking performance of 
the controller degrades. Figure 7 show mean 
squared error from the desired transition trajectory 
for wind disturbances and parametric changes of 
X ,  , for the least squares adaptation of the 
nominal mode transition controller. As expected, if 
the approximate plant accurately captures the local 
model information and the inputloutput behavior of 
the system to be controlled, the adapted controller 
exhibits excellent tracking performance when 
encountering parametric changes and wind 
disturbances. 

Figures 4-5 show the desired x, x ,  6 and 9 
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Figure 5. Plots of desired 6 and 8 
trajectories 
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Figure 6. Plots of mean squared errors for 
controller designed via BLMC approach 
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Figure 7. Plots of mean squared errors for 
adaptation with approximate plant knowledge 

The Enabling Software Technology 
The adaptive mode transition control 

algorithm described in this paper is being enabled 
by an emerging software architecture, called the 
Open Control Platform (OCP). The OCP will be 
used to integrate the adaptive mode transition 
control algorithm with a wide variety of 

components needed to achieve autonomous flight, 
such as the mode selector module, the mission 
planning module, the situation awareness module 
and the fault tolerant control module. The OCP is 
being designed to support the following capabilities 
that are required to accommodate the operational 
and environmental changes inherent in 
autonomous, extreme-performance flight: 

0 Plug and play extensibility: it should be 
easy to insert new technology, such as new 
control algorithms or sensor technology into 
the system architecture without redesigning 
the components already in the system. 

heterogeneous environments: control 
algorithms and other components may be 
running on different processors, using 
different programming languages, hardware 
platforms, and network protocols, most 
likely over wireless links. We need to 
provide real-time communication among 
these distributed components while dealing 
with tight constraints on bandwidth, 
response time, and reliability. 
Dynamic reconfiguration: We need to 
support on-line switching of algorithmic 
components and rapid redirection of the 
interconnections among them, as well as 
changing the priorities at which information 
is flowing. 
Real-time quality of service (00s) 
guarantees are needed to enable predictable 
local and distributed communication for 
control and data acquisition. Adaptive 
scheduling for optimum resource utilization 
is essential. 

Interoperability in distributed, 

Real-time Distributed Computing 

Broker Architecture (CORBA) [7] to achieve 
seamless distributed communication between 
components running on different processors, using 
different programming languages, hardware 
platforms and network protocols while dealing with 
tight constraints on bandwidth, response time and 
reliability. Components interact through an Object 
Request Broker (ORB). Using an ORB, a client 
can transparently invoke a method on a server 
object which can be on the same machine or across 

The OCP uses the Common Object Request 
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a network. The ORB intercepts the call and is 
responsible for finding an object that can 
implement the request, pass it the parameters, 
invoke its method and return the results. The client 
does not have to be aware of where the object is 
located, its programming language, its operating 
system or any other system aspects that are not part 
of an object’s interface. Therefore, the ORB 
provides interoperability between applications on 
different machines in heterogeneous distributed 
environments and seamlessly interconnects 
multiple object systems. 

components to interact without being tightly 
coupled. This eases architectural evolution and 
facilitates on-line reconfiguration. The event 
service provides a communication abstraction, 
called an event channel, similar to a bus. 
Components that generate data (“suppliers”) or use 
data (“consumers”) connect to the event channel 
and the suppliers “publish” certain data event types 
while the consumers “subscribe” to certain event 
types. 

The event channel acts as a Mediator [9] 
between components so that their interconnections 
are flexible. The event channel provides the level 
of abstraction needed by mediating information 
flow between suppliers and consumers. When a 
new type of sensor is added to the system or 
replaces another type of sensor, for example, it can 
be connected to the event channel to publish its 
type of data and all consumers subscribed to that 
data will receive it. The event channel helps to 
minimize the architectural impact of switching 
components by localizing the changes needed. 

The OCP also allows control system 
developers to specify real-time QoS requirements 
for components (such as event frequency, period 
and priority). The event service used by the OCP 
provides QoS specification and enforcement 
through preemptive real-time scheduling of all 
system components, including processors, memory 
units, network interfaces, and network bandwidth. 
This capability is essential in pushing the limits of 
controlling UAVs while maintaining efficient 
resource utilization. 

The OCP uses an event service [SI that enables 

Virtual Resource Network 
The virtual resource network (VRN) is an 

abstraction used to simplify configuration and 
reconfiguration of system components during a 
mission. The overall objective in configuring 
control software for a mission is to define the 
interactions between the various components in the 
system in a systematic fashion, where the 
components of the system are treated as network 
resources at multiple levels of granularity. For 
example, in the UAV application, reconfiguration 
could be at the mission level, the sensor level or 
anywhere in between. 

The ability of these resources to be flexibly 
interchanged without changing other components in 
the system comes from the standardization of the 
interfaces for each component. The standardization 
of the interfaces are achieved using the CORBA 
Interface Definition Language [7]. It is also 
possible for any other resource on the network to 
use a resource address to connect directly and 
interact with the resource, irrespective of where it 
exists on the network. Thus, all distributed 
computing specifics are abstracted out via the 
VRN. Also, the VRN is used to define how the 
resources interact, by defining the input/output 
relationships among the components. 

Reconfiguration Management 
The software infrastructure supports a loose 

coupling between control system components to 
provide flexibility, extensibility and reuse. The 
VRN provides a layer of abstraction for easily 
specifying configurations and reconfigurations with 
localized changes to the VRN representation. 
However, a configuration management mechanism 
is needed to ensure that the configurations, 
specified in the VRN, are valid and consistent with 
functional and nonfunctional requirements (such as 
performance, security and reliability). Moreover, it 
is critical that changes to the configuration maintain 
overall system integrity by being gIobally 
coordinated and consistent. 

The OCP takes an architecture-oriented 
approach to reconfiguration management by 
identifying and exploiting system configuration 
patterns and reconfiguration strategies specific to 
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the real-time controls domain. Reconfiguration of 
control systems will follow standard strategies for 
making changes without violating reliability, safety 
and consistency constraints. These strategies may 
dictate how quickly one algorithm can be switched 
for another or whether a redundant component 
needs to work concurrently with the component is it 
replacing before the swap occurs to allow the new 
component to “come up to speed”. For example, 
the adaptive mode transition control algorithm 
discussed in this paper may be the primary 
mechanism used in a control system to gracefully 
transition between modes. However, it has a 
certain operating range that on rare occasions may 
be exceeded. In these cases, we may want the 
control system to fall back on a traditional gain 
scheduling control algorithm which transitions 
through a fixed trajectory of local controllers. It 
may not be possible for the original mode 
transitioning algorithm to be switched abruptly to 
the gain scheduling one. Instead, we may need a 
gradual switch from the primary control algorithm 
to the other. 

A beneficial synergy exists in the concurrent 
development of the mode control algorithms and of 
the OCP. While the adaptive mode transition 
control algorithm is enabled by the OCP, it is also 
driving the underlying component-based software 
technology forward by demanding new OCP 
capabilities to support on-line customization and 
extreme performance. 

Conclusions 
An adaptation scheme is proposed for the 

online adaptation of mode transition controllers 
designed via the blending local mode controllers 
approach. And, a software architecture used for 
integrating the control algorithm with other system 
components is discussed. 
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