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ABSTRACT

This paper introduces a novel methodology to prognostics based on a dynamic wavelet neural network construct and notions
from the virtual sensor area.  This research has been motivated and supported by the U.S. Navy’s active interest in integrating
advanced diagnostic and prognostic algorithms in existing Naval digital control and monitoring systems. A rudimentary
diagnostic platform is assumed to be available providing timely information about incipient or impending failure conditions.
We focus on the development of a prognostic algorithm capable of predicting accurately and reliably the remaining useful
lifetime of a failing machine or component. The prognostic module consists of a virtual sensor and a dynamic wavelet neural
network as the predictor. The virtual sensor employs process data to map real measurements into difficult to monitor fault
quantities. The prognosticator uses a dynamic wavelet neural network as a nonlinear predictor. Means to manage uncertainty
and performance metrics are suggested for comparison purposes. An interface to an available shipboard Integrated Condition
Assessment System is described and applications to shipboard equipment are discussed. Typical results from pump failures
are presented to illustrate the effectiveness of the methodology.
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1. INTRODUCTION
Condition-based maintenance (CBM) typically entails a diagnostic module which detects and identifies incipient component
or subsystem failure conditions, a prognostic module whose task is to estimate the remaining useful lifetime of the failing
component and a maintenance scheduler which schedules maintenance in order to maximize equipment uptime while meeting
certain constraints.

This paper addresses issues relating to the prognostic module – the Achilles heel of the CBM architecture. Fault diagnosis is
a mature field with contributions ranging from model-based techniques to data-driven configurations that capitalize upon soft
computing and other “intelligent” tools (Konrad & Isermann 1996, Mylaraswamy & Venkatasubramanian 1997). CBM
scheduling is a complex task that involves finding the “optimum” time to perform maintenance within the window prescribed
by the Prognosticator while meeting a host of constraints. This scheduling problem may be formulated as a multi-objective
optimization problem where the main objective is to maximize process uptime while satisfying a set of constraints that relate
to resource and maintenance personnel availability, production and scheduling requirements, redundant or relocatable
machines, timing constraints, etc (Barbera et al 1996, Makis et al 1998, Prickett & Eavery 1991). The word “prognosis”
implies the foretelling of the probable course of a disease (Taylor 1953), a term widely used in medical practice. In the
industrial and manufacturing arenas, prognosis is interpreted to answer the question: what is the remaining useful lifetime of
a machine or a component once an impending failure condition is detected and identified? Stochastic Auto-Regressive
Integrated Moving Average (ARIMA) models (Jardim-Goncalves et al 1996), fuzzy pattern recognition principles (Frelicot
1996), knowledge-intensive expert systems (Lembessis et al 1989), nonlinear stochastic models of fatigue crack dynamics
(Ray & Tangirala 1994), polynomial neural networks (Parker et al 1993), Weibull models (Groer 2000), and other techniques
have been introduced over the past years to address the diagnostic/prognostic problem. This paper attempts to address this
issue by introducing a novel combination of a “virtual” sensor as a mapping tool between known measurements and
“difficult-to-access” quantities and a dynamic wavelet neural network as the “predictor”, i.e. the construct that projects into
the future the temporal behavior of a faulted component.
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2. PROGNOSTICATION
Prognosticators perform the vital function of linking the diagnostic information with the maintenance scheduler. They are
probably the least understood but most crucial component of the diagnostic/prognostic/CBM hierarchical architecture.
Furthermore, they entail ambiguity and large-grain uncertainty since the historical evolution of a failure event – the growth of
a structural fault, for example – is difficult if not impossible to model accurately, historical data is not readily available and
the particular growth phenomenon may be strongly dependent on the system structure, operating conditions, environmental
effects, etc. They are viewed as dynamic predictors that receive fault data from the diagnostic module and determine the
allowable time window during which machine maintenance must be performed if the integrity of the process is to be kept as
high as possible. The term “dynamic predictor” implies also the functional requirement that the target output, i.e. remaining
useful lifetime or time-to-failure, is dynamically updated as more information becomes available from the diagnostician.
Thus, this scheme should reduce the uncertainty and improve the prediction accuracy as the accumulated evidence grows.
Figure 1 depicts the overall architecture of the proposed prognostic system. The diagnostician monitors continuously critical
sensor data and decides upon the existence of impending or incipient failure conditions. The detection and identification of an
impending failure triggers the prognosticator. The latter reports to the CBM module primarily the remaining useful lifetime
of the failing machine or component. The CBM module schedules the maintenance so that uptime is maximized while certain
constraints are satisfied. The schematic of Figure 1 focuses on the functionalities of the prognosticator. The diagnostician
alerts the prognostic module and provides failure and other pertinent sensor data to it. The prognostic architecture is based on
two constructs: a static “virtual sensor” that relates known measurements to fault data and a predictor which attempts to
project the current state of the faulted component into the future thus revealing the time evolution of the failure mode and
allowing the estimation of the component’s remaining useful lifetime. Both constructs rely upon a Wavelet Neural Network
(WNN) model acting as the mapping tool.

2.1  Wavelet Neural Networks
WNNs belong to a new class of neural networks with unique capabilities in addressing identification and classification
problems. Wavelets are a class of basic elements with oscillations of effectively finite-duration that makes them like “little
waves”. The self-similar, multiple resolution nature of wavelets offers a natural framework for the analysis of physical
signals and images. On the other hand, artificial neural networks constitute a powerful class of nonlinear function
approximants for model-free estimation. A common ground between these two technologies may be coherently exploited by
introducing a WNN. Indeed, the implementation of a neural network is closely related to a truncated version of the wavelet
series.

A multi-input multi-output (MIMO) WNN is illustrated in Figure 2, which has only one hidden layer. This WNN can be
formulated, in a vector format, as (Schauz 1996):
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where x is the 1×n input row-vector; y is the 1×K output row-vector and K is the number of outputs; Aj is the n×n squashing
matrix for the jth node; bj is the 1×n translation vector for the jth node; C is the M×K matrix of output coefficients, where M
is the number of wavelet nodes; Clin is the (n+1)×K matrix of output coefficients for the linear direct link; and ψ is the
wavelet function that can take the form:
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where x is the input row-vector; A the squashing matrix for the wavelet; b the translation vector; and T the transpose
operator. Composed of localized basis functions, the WNNs are suitable for capturing the local nature of the data patterns and
thus are efficient tools for both classification and approximation problems.

Equation (1) is a static model in the sense that it establishes a static relation between its inputs and outputs. All signals flow
in a forward direction only with this configuration. Dynamic or recurrent neural networks, on the other hand, are required to
model the time evolution of dynamic systems. Signals in such a network configuration can flow not only in the forward
direction but also can propagate backwards, in a feedback sense, from the output to the input nodes. Dynamic wavelet neural
nets have recently been proposed to address the prediction/classification issues. A multi-resolution dynamic predictor that
utilizes the discrete wavelet transform and recurrent neural networks forming nonlinear models for prediction was designed
and employed for multi-step prediction of the intra-cranial pressure signal (Tsui et al 1995). A recurrent wavelet neural
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network was developed for the blind equalization of nonlinear communication channels (He & He 1997); recurrent wavelet
neural networks were also derived by Rao & Kumthekar (1994) using the real-time Back-Propagation (BP) algorithm.

The basic structure of a DWNN is shown in Figure 3. Delayed versions of the input and output augment now the input
feature vector and the resulting construct can be formulated as:

( 1) ( ( ),..., ( ), ( ),..., ( ))Y t WNN Y t Y t M U t U t N+ = − −  (3)

where U is the external input; Y is the output; M is the number of outputs minus 1; N is the number of external inputs minus
1; and WNN stands for a static WNN. When measuring the angular velocity of a servo motor, for example, Y(t) could be the
velocity to be measured and U(t) be the regulating voltage that controls the motor’s rotation at time t. Equation (3) forms an
evolving or prediction model that dynamically maps the historical and current data into the future. In essence, this DWNN is
a kind of partially recurrent WNNs of simple but well-defined structures that are more convenient to design and apply in
practical situations than the fully recurrent WNNs.  Compared to traditional prediction techniques such as ARIMA, DWNNs
offer, in a systematic manner, more flexibility in terms of nonlinear mapping, parallel processing, heuristics-based learning,
and hardware implementation.

2.2  Virtual Sensors
It is often true that machine or component faults are not directly accessible for monitoring their growth behavioral patterns.
Consider, for example, the case of a bearing fault. No direct measurement of the crack dimensions is possible when the
bearing is in an operational state. That is, there is no such device as a “fault meter” capable of providing direct measurements
of the fault evolution. Examples of a similar nature abound. Marko et al (1996) developed a neural net-based virtual or ideal
sensor used to diagnose engine combustion failures, known as misfire detection. Their technique employs a recurrent neural
net as the classifier that takes such inputs as crankshaft acceleration, engine speed, engine load and engine ID and produces a
misfire diagnostic evaluation as the output. In the present study, the same concept is exploited to design a virtual sensor
which takes as inputs measurable quantities or features and outputs the time evolution of the fault pattern. A schematic
representation of such a WNN as a virtual sensor is illustrated in Figure 4.

2.3 Predictors
A fault predictor based on the DWNN is shown in Figure 5. The process is monitored real-time using appropriate sensors.
Here, virtual sensors can also be employed to measure signals or their derivatives that are difficult to record on-line and on-
site. Data obtained from measurements are continuously processed and features extracted on a time scale. The features are
organized into a time-stamped feature vector that serves as the input to the DWNN. Consequently, the DWNN performs as a
dynamic classifier or identifier. The data used to train the predictor must be recorded with time information, which is the
basis for the prognosis-oriented prediction task. In the case of a bearing fault, the predictor could take the fault dimensions,
failure rates, trending information, temperature, component ID, etc. as its inputs and generate the fault growth as the output.
Feature extraction can be performed periodically for the processes under prognosis. It should be noted that features are
extracted in temporal series and are dynamic in the sense that the DWNN processes them in a dynamic fashion. Then, the
obtained features are fused into the time-dependent feature vector that characterizes the process at the designated time
instants. Feature selection is based on criteria that distinguish a fault signature from normal operating conditions and one
particular fault mode from another. Such other criteria as computational cost may be included.

The DWNN must be trained and validated before any on-line implementation and use. Such algorithms as the Back-
Propagation or GA can be used to train the network. Once trained, the DWNN, along with the TTF calculation mechanism,
can act as an on-line prognostic operator. It is worth reiterating that the results from the diagnosis serve as the input to the
prognosis. Thus, the fidelity and accuracy of the diagnostician bears a direct impact on the reliability of the prognosticator.
Predictions can be substantially improved as more fault data become available. The diagnostic/prognostic operation is
viewed, therefore, as a dynamic, “evolving” mechanism with adaptive observation and prediction windows. More accurate
predictions can result from the utility of additional historical information. The DWNN is, indeed, updated on-line in a real-
time fashion.

3. UNCERTAINTY MANAGEMENT
Uncertainty representation and management for fault prognosis are difficult tasks since prognosis involves both subjective
and objective uncertainties and operates over the time horizon from the past, through the present and to the future.
Uncertainty sources must be identified and modeled. Uncertainty management schemes, i.e., methods to reduce the
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uncertainty bounds as more data becomes available, must be derived. Probability and possibility theories are two candidates
of mathematical tools to deal with these issues.

For simplicity, this paper deals only with data uncertainties and uses uncertainty boundaries for reporting prognostic results.
This results in the so-called interval predictions, compared to point predictions. An uncertainty interval can be generated
through the estimation of a lower and an upper bound of the prediction window. As shown in Figure 6, a fault indicated by
the feature F(t) would evolve along its mean FM(t) and within its lower bound FL(t) and upper bound FU(t). Hence, the fault
prognosis problem can be stated as: using historic data of F(t) to predict its mean FM(t) and boundaries [FL(t) FU(t)] until the
remaining useful lifetime or the time-to-failure of the targeted component is found with its mean TM and confidence interval [
TL TU ], under a certain failure criterion FF .  For example, a faulty servomotor could be prognosticated as having a remaining
useful lifetime of around 15 hours, probably between 10 and 20 hours, under the criterion that the temperature of the motor
should not exceed 70°C. In this case, TM = 15 days, TL= 10 days, TU = 20 days, and FF =70°C.

Generally, FM(t), FL(t), and FU(t) can be obtained by applying statistical or fuzzy clustering techniques to the given data. The
mean FM(t) is the center of the data points at the time instant t. The lower bound FL(t) is the smallest data point at the time
instant t. The upper bound FU(t) is the largest data point at the time instant t. The upper bound FU(t) and the lower bound FL(t)
harness the development of the mean FM(t) so that the instantaneous feature F(t) should appear to be moving in a band.
However, it is not very applicable to allow FU(t) and FL(t) to be the extreme data points that are much less populated. A better
way is to choose FU(t) and FL(t) using a confidence level, say, α to trim the probability density function (PDF) of F(t), as
shown in Figure 7.

4. PERFORMANCE ASSESSMENT
When a number of prognostic algorithms are available for a certain prognostic task, it is essential to compare these
algorithms and select the best one for implementation so that the prognosis can be accomplished in a more efficient and
effective manner. For example, how to rate a DWNN based prognosticator against a traditional auto-regression (AR) based
one for the targeted application. It is essential, therefore, that means are devised to assess the performance of various
prognostic algorithms. In general, an assessment methodology should consider both the technical and economic feasibility of
the algorithms and their associated implementation platforms. Consequently, performance measures (PMs) should include the
cost of equipment and maintenance, personnel expenses, accuracy of detection and prediction, etc, which are usually grouped
into two categories: those associated with economic factors and the ones relating to the technical (or algorithmic) concerns. In
the second, accuracy, speed, complexity and scalability are typical measures, whereas the first includes purchase and
implementation costs, maintainability, computing resources, reliability, user-friendliness, among others.

5. AN ILLUSTRATIVE EXAMPLE
Industrial chillers are typical processes found in many critical applications. These devices support electronics,
communications, etc. on a navy ship, computing and communication in commercial enterprises, refrigeration and other
functions in food processing, etc. Of special interest is the fact that their design incorporates a diverse assemblage of common
and vital components, i.e. pumps, motors, compressors, etc. A rich variety of failure modes are observed on such equipment
ranging from vibration-induced faults to electrical failures and a multitude of process-related failure events. Most chillers are
well instrumented monitoring vibrations, temperature, pressure, flow, etc., and many mechanical faults exhibit symptoms that
are sensed via vibration measurements. For example, a water pump will vibrate if its motor bearing is defective, if its shaft is
misaligned or if its mounting is somewhat loose. A rolling-element bearing fault is used in this study to demonstrate the
feasibility of the prognostic algorithms.

Defective bearings or loose mounting bolts would cause pumps to vibrate abnormally. The vibrations are typically monitored
by accelerometers with the measured signals transferred to data acquisition units via co-axial cables. Shiroishi et al (1997)
collected tri-axial vibration signals originating from a bearing with a crack in its inner race. An initial crack was seeded in the
bearing and the experiment was run for a period of time and vibration data were recorded during that period. The set-up was
then stopped and the crack size was increased followed by a second run. This procedure was repeated until the bearing failed.
The crack sizes were organized in an ascending order while time information was assumed uniformly distributed among the
crack sizes. A training data set relating to the crack growth was thus obtained. Time segments of vibration signals from a
good bearing and a defective one are shown in Figure 8. Their corresponding power spectral densities (PSDs) are shown in
Figure 9. The original signals were windowed with each window containing 1000 time points. The maximum values of the
vibration signals in each window were also recorded as shown in Figure 10 where x, y, and z represent the three Cartesian
axes along which the accelerometer measures the vibrations. The PSDs of the windowed vibration signals were calculated
and their peak values extracted as depicted in Figure 11. Figure 12 shows the corresponding crack sizes. Crack size
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information at intermediate points was generated via interpolation to avoid a large number of repeated experiments. There are
100 data points for each curve in the figures. The features chosen for prognosis are the maximum signal values and the
maximum signal PSDs for all three axes, i.e., (MaxSx MaxSy MaxSz) and (MaxPSDx MaxPSDy MaxPSDz).

Figure 13 demonstrates the crack growth as a function of time. The model was first trained using the fault data up to the 100th

time window; from then on, it predicted the crack evolution until the final bearing failure. Mexican hats were used as mother
wavelets throughout all the experiments. The virtual sensor, implemented as a WNN with seven hidden nodes or neurons,
was trained through the process of Figure 14. This virtual sensor “measured” the crack size on the basis of the maximum
signal amplitudes and the maximum signal PSDs as inputs. The training results are depicted in Figure 15. It is observed that
100 data points employed for training led to very satisfactory results. The DWNN, acting as the predictor, was trained next,
as shown in Figure 16. The optimized training procedure resulted in a DWNN of 6 input (i.e. the model order is 6), 8 hidden
and 2 output neurons. The training took several hours to finish due to a large number of network parameters to be trained,
which totaled 368 composed of 6×6×8 for A, 6×8 for B, 2×8 for C and 2×8 for Clin. The training results are shown in Figure
17. Training was deemed satisfactory when 100 data points were used. The trained predictor was employed finally to predict
the future crack development, as shown in Figure 18. A failure hazard threshold was established on the basis of empirical
evidence corresponding to Crack_Width = 2000 microns or Crack_Depth = 1000 microns. The crack reached this hazard
condition at the 174th time window. The Crack_Width criterion was reached first. It should be noted that these results are
preliminary and intended only to illustrate the proposed prognostic architecture. In practices, a substantially large database
may be required for feature extraction, training, validation and optimization. Such a database will permit a series of
sensitivity studies that may lead to more conclusive results as to the capabilities and the effectiveness of the proposed
approach.

6. CONCLUSIONS
A fault prognostication architecture consisting of a virtual sensor and a dynamic wavelet neural network is proposed. The
proposed model addresses two challenging issues relating to prognosis of machine or component failures: How do we
“measure” the growth of a fault and how do we predict the remaining useful lifetime of such a failing component or machine?
Reliable answers to these questions are bound to assist maintenance personnel in the conduct of condition-based maintenance
so that uptime is maximized and the useful life of critical assets is prolonged. Simulation studies of the virtual sensor –
predictor configuration, based on a limited experimental data set, show promise. More extensive failure data – difficult to
obtain in critical processes – are required to draw firm and comparative conclusions. The proposed architecture provides a
generic and open platform that can be easily modified and augmented as new failure evidence becomes available.
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Table 1  Statistical summary of the prognosis for the three retraining cases

Retraining Max-sum Min-sum Mean-sum Median-sum STD-sum
0% 36.3343 10.6000 22.2808 21.8376 8.4170
100% 31.5005 3.8809 15.0437 13.8941 8.9190
67% 32.2762 3.6422 15.0822 13.7477 9.1208

Figure 1.  The overall architecture of the prognostic system
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Figure 4.  A schematic representation of the WNN as a virtual sensor
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Figure 5.  A schematic representation of the DWNN as the predictor

Figure 6.  Uncertainty boundaries in a prognostic task
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Figure 8. Vibration Signals from a normal and a defective bearing
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Figure 9 PSDs of the vibration signals in Figure 8

Figure 10  The peak values of the original signals  Figure 11  The maximum PSDs of the
 original signals

 Figure 12  The original crack sizes   Figure 13  The training of the virtual sensor

Normal

Defective

0 20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2
Figure 2 Spectra: good & defective

0 20 40 60 80 100 120 140
0

2

4

6

8

10

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

Time  Window

C
ra

ck
 S

iz
e

W id th

D e p th

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Time Window

M
ax

im
um

 V
al

ue

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time Window

M
ax

im
um

 P
S

D

0 10 20 30 40 50
27.5

28

28.5

29

29.5

30

30.5

31

31.5

32

32.5
Genetic Optimization

C
os

t f
un

ct
io

na
l

Generation

Average

Best

Proc. SPIE Vol. 438910



Figure 14 The crack sizes measured by  Figure 15  The training of the predictor
the trained virtual sensor
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