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AbstractMonitoring the health of systems provides important benefits for many operations in the 
industrial, commercial, and military sectors.  When the health state of important machinery is known and 
can be predicted, maintenance costs are lowered, safety is increased, spare part inventories can be controlled 
more efficiently, and system downtime due to failures is reduced.  Much work has been done in the separate 
areas of machinery diagnostics and prognostics, however, there was no general framework for the 
combination of the two ideas.  Global Technology in conjunction with Georgia Tech and the Naval Surface 
Warfare Center (NSWC) has been developing a generic diagnostic/prognostic software and hardware 
architecture to detect and predict failures applied to York chillers found on Naval vessels.  The method 
utilized is a data-driven system where chiller failures are seeded and sensor information is recorded and 
stored.  The gathered data is then used to train the software modules responsible for diagnosing and 
prognosing failures.  Once the training has been completed, the system is connected on-line to notify the user 
of incipient failures and the useful life remaining before maintenance must be performed.  This information 
can be utilized in a preventative maintenance program (condition-based maintenance) to optimally schedule 
maintenance work orders.  By scheduling maintenance based on machine health, rather than a periodic 
timetable, costs are reduced and equipment availability is enhanced.   With regards to chillers, future ship 
systems will require a high degree of thermal management impacted by heavy loads and more automated 
equipment and electronics aboard.  Clearly, Sea Basing can benefit from a condition-based maintenance 
approach where weight and inventory space is limited, crew safety is a concern, and system downtime is 
unacceptable.  

 
 

Index TermsDiagnostics, Prognostics, Machinery Health Monitoring, Mode Identification 
 
1. INTRODUCTION 

 
Condition based-maintenance (CBM) is the next step in the evolution of maintenance engineering systems.  This 
approach toward maintenance optimally schedules resources and maintenance activities based upon the measured 
and predicted health status of machinery.  Other maintenance approaches such as redundant systems and periodic 
maintenance often waste money, time, space, materials, etc.  CBM provides many benefits such as lowered 
maintenance costs, increased workplace safety, efficient inventory control, etc.  However, the growth of this 
technology is relatively slow due to lack of failure data, equipment expense, development time, etc.  Thus, research 
continues to develop new CBM technologies in order to make CBM a viable maintenance solution for a wide variety 
of systems.  
 
CBM approaches often begin with the detection and classification of impending failures from sensor data.  This step 
is called diagnostics.  After an impending failure has been detected, a prediction is made on the future time-
evolution of the failure.  This failure behavior prediction is called prognostics.  The interesting failures are of the 
variety where the failure grows with time and eventually reaches a critical time where the failure becomes 
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catastrophic.    The failure detection and prediction information from both diagnostics and prognostics, respectively, 
is then used for other purposes such as maintenance scheduling and resource management.   
 
In this paper, we describe a generic, intelligent, data-driven, diagnostic and prognostic software architecture.  
Section 2 describes the diagnostic and prognostic software architecture.  Section 3 discusses the experiments 
performed on a 363-Ton York AC chiller.  Section 4 then concludes with the benefits and drawbacks currently 
associated with this data-driven approach. 

 
2. PROGNOSTIC ENHANCEMENTS TO DIAGNOSTIC SYSTEMS (PEDS) SOFTWARE 
ARCHITECTURE 
 
This section describes the main modules of the Prognostic Enhancements to Diagnostic Systems (PEDS) software 
architecture.  Figure 1 shows sensor information that is extracted from the system under study is fed into a computer 
through a data acquisition device for diagnostic/prognostic software processing.   The PEDS system then outputs 
any detected impending failures and their associated predicted time-to-failure. 
 

 

 
Figure 1. The general diagnostics and prognostics hardware configuration. 

 
 
Figure 2 shows the different modules of the PEDS software architecture.  Central to the architecture are the database 
and event manager modules which store data and control the execution of the other modules, respectively.  The data 
pre-processing module filters noise and other artifacts to improve signal-to-noise ratio.  The mode estimator module 
identifies the operating mode of the system and declares which sensors should be examined and how they should be 
processed.  Feature extraction is performed on the relievant data to aid in the detection of impending failures.  The 
diagnostic module determines whether or not an impending failure has been detected and identifies the failure 
through several classifiers (i.e. Fuzzy Logic and WNN).  The outputs of these classifiers are fused through use of 
Dempster-Shafer theory to produce a degree-of-certainty associated with each detected failure.  Once a failure has 
been detected, the event dispatch commands the prognostic module (i.e. DWNN and CPNN) to predict and place 
bounds on the time-to-failure.  The following subsections (2.1-2.4) describe some of these modules in further detail. 
 



 
Figure 2. The PEDS software architecture. 

2.1 Feature Extraction 

In many cases, relevant information is difficult to interpret directly from sensor data.  Noise and other artifacts 
compound the problem of determining which data is important to the task of detecting and predicting failures.  
Feature extraction is used to aid in separating the relevant and irrelevant information from the gathered data.  Some 
common features are the mean, standard deviation, height of peaks at certain frequencies of spectral data, etc.  
Typically, several different features are extracted from a window of collected data which defines a feature vector.  
The feature vector is often optimized by using a method known as feature selection which determines the best 
features for correctly diagnosing and prognosing failures. 

 
2.2 The Mode Identification Module 
Different operating modes such as fast, slow, high load, low load, shutdown, startup, etc. cause failures to evolve in 
different ways.  Therefore, it is important that the operating mode be known in advance in order to accurately detect 
and predict failures.   
 
The mode identification module presented in this paper takes a hybrid approach where events and dynamics are used 
to determine the current operating mode separately and then this information is fused to a single identified operating 
mode as shown in Figure 3.   The event-driven part of this model is represented through a fuzzy Petri net where the 
places represent modes and transitions are mode transition events.  The events are represented in rule form with 
membership functions representing the uncertainty of the event description.  The time-driven part of the model uses 
a fuzzy expert classifier with Mandani inference engine with center-of-mass defuzzification.  The output of event- 
and time-driven models are fused to determine a final identified operating mode.   
 



 
Figure 3. The mode identification module architecture. 

 
2.3 The Diagnostic Module 
The diagnostic module which detects and classifies impending failures is composed of two intelligent software 
modules:  fuzzy logic expert and Wavelet Neural Network.  The outputs of these modules are fused to give a degree 
of certainty about the failure mode.  Section 2.3.1 describes the fuzzy logic expert diagnostician and section 2.3.2 
illustrates the Wavelet Neural Network in more detail. 
 
2.3.1 The Fuzzy Logic Expert Module    
The fuzzy diagnostic module is utilized to detect process fault modes from feature data, i.e. faults resulting from 
low-bandwidth events and exhibiting low-frequency signatures.  An initiation event begins the fuzzy diagnostic 
module calculations; it receives feature inputs from the database and reports to the database any indications that a 
failure mode may have occurred, as shown in Figure 4.   
 
The Dempster-Shafer module returns a Degree of Certainty (DOC) for detected faults.  If a fault mode is detected, 
the diagnostic output event is triggered with relevant information such as the fault mode name, time of detection, 
DOC, etc.  This output event is used for the initiation of various prognostic modules. 

 
Figure 4. The fuzzy logic expert diagnostic architecture. 

 
The fuzzy logic system structure is composed of four blocks: fuzzification, the fuzzy inference engine, the fuzzy 
rulebase, and defuzzification, as shown in Figure 5. 

 

 
Figure 5. The fuzzy logic system structure. 



 
The fuzzification block converts features to degrees of membership within a linguistic label set such as pressure low, 
pressure high, etc.  The fuzzy membership functions are designed through classification techniques from the feature 
set such as the fuzzy c-Means method.  The fuzzy rulebase is constructed from symptoms that indicate a potential 
fault mode.  Two example fuzzy rules for diagnostic detection are shown in Figure 6. 

 
Figure 6. A graphical representation of two rules in a fuzzy rulebase. 

 
The fuzzy rulebase can be developed directly from user experience, simulated models, or experimental data.  Fuzzy 
values are aggregated through a fuzzy inference engine to determine the degree of fulfillment for each rule 
corresponding to a failure mode (Mandani approach).   The defuzzification block outputs between 0 and 100 using 
the centroid method, as shown in Figure 7.  These values are compared to a threshold to determine whether or not a 
fault mode should be declared as having been detected. 

 
Figure 7. Graphical representation of the fuzzy inference engine and defuzzification. 

 
The Dempster-Shafer Theory of Evidence module is incorporated into the system for uncertainty management 
purposes.  Each input feature has fuzzy membership functions associated with it representing the possibility of a 
fault mode.   Each feature, therefore, represents an expert in this setting.  These possibility values are then converted 



to basic probability assignments for each feature.  Dempster’s rule of combination is then used to assimilate the 
evidence contained in the mass functions and to determine the resulting degree of certainty for detected fault modes. 
 
 
2.3.2 The Wavelet Neural Network (WNN) 
The WNN (Figure 8) is used also as one component of the classifier. Potential advantages of the WNN approach 
include: The resulting neural network is a universal approximator; the time - frequency localization property of 
wavelets leads to reduced networks at a given level of performance; WNNs offer a good compromise between 
robust implementations and efficient functional representations; the multi-resolution organization of wavelets 
provides a heuristic for neural network growth.  Furthermore, WNNs may be optimized with respect to structure 
(number of nodes) and their parameters using a Genetic Algorithm as the optimization tool.  The WNN is trained, 
thus, as a two-step process:  the structure and the parameters of the network are determined iteratively until a 
performance metric is satisfied.  The WNN construct suggests a means to parallel-process multiple signals in a 
multi-tasking environment, thus expediting considerably processing times.  Finally, it offers an easy and user-
friendly way to "learn" new signal patterns, as long as training data is available.  
 

 
Figure 8. The Wavelet Neural Network structure. 

             
 

2.4 The Prognostic Module 
It is well understood that prognostics is the most difficult component of the CBM scheme since it requires prediction 
in the presence of uncertainty of the remaining useful lifetime of a failing component. It is, therefore, the “Achilles’ 
heel” of the overall system and an effective breakthrough towards its solution may lead to viable CBM 
implementations and improved equipment uptime. The prognosticator consists of two components: DWNN [5] and 
CPNN [6, 7].  
 
2.4.1 The Dynamic Wavelet Neural Network (DWNN) 
The DWNN is based on a static “virtual sensor” (Figure 9) and a predictor.  The basic DWNN structure is shown in 
Figure 10.  The static virtual sensor relates known measurements to difficult to acquire failure measurements.  The 
predictor attempts to project the current state of the faulted component into the future thus revealing the time 
evolution of the fault mode and allowing the estimation of the component’s remaining useful lifetime.  Both 
components rely upon a dynamic wavelet neural network model acting as the mapping tool.  
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Figure 9. A virtual sensor. 

 
Figure 10. The DWNN structure. 

 
2.4.2 The Confidence Prediction Neural Network (CPNN) 
 
The CPNN represents uncertainties as multiple trends and confidence distributions.  Classical statistical models for 
prediction, such as ARIMA, do not provide means to compute uncertainty bounds or prediction intervals.  The 
simple concept of standard deviation of prediction errors is frequently applied to provide such bounds.  While this 
approach works well for single step prediction, it raises serious concerns when applied to multi-step prediction 
problems.  While the benefits of the uncertainty representation or confidence measure are well understood and have 
motivated much research, little attention has been paid to an uncertainty distribution of the prediction. We developed 
a neural network, called Confidence Prediction Neural Network (CPNN) to address this problem (Figure 11).  The 
CPNN accomplishes the goal of representing uncertainty in the form of a confidence distribution by employing a 
confidence distribution approximator node as shown in Figure 4.  Details of this novel development can be found in 
the cited references [6,7]. 
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Figure 11. The Confidence Prediction Neural Network. 

 
 
3. THE CHILLER TESTBED 
A 363-Ton York AC Chiller (Figure 12) located at the U.S. Navy HVAC RDT & E testing facility in Philadelphia, 
PA was used to collect chiller data and test the operation of the diagnostic/prognostic software on-line.  The chiller 
sensors were connected through an embedded microprocessor/data acquisition unit which relayed sensor 
information to the diagnostic/prognostic computer through a serial port connection.  There were 45 sensors readings 
from the chiller/microprocessor such as pressures, temperatures, valve positions, solenoid states, etc.   
 

 
Figure 12. The 363-Ton York chiller at the testing facility. 

 
Experimental data was collected for the following failure modes: 
 

• Refrigerant charge leaking/low (RCL) 
• Condenser tube fouling (CTF) 
• Compressor Surge (CSurge) 
• Compressor Stall (CStall) 

 



The failure experiments were designed so that the chiller would not be damaged.  Such experiments where the actual 
failure does not occur is known as “seeding” failures where one tries to get close to the expected symptoms of the 
real failure.  The failures were “seeded” at different loads and temperatures settings as such: 
 

• RCL – Refrigerant was pumped out at a slow rate (e.g. 50 lbs per hour) 
• CTF – The condenser pump rate was reduced slowly 
• CSurge – The VGD position was reduced slowly towards 10% 
• CStall – The VGD position was increased slowly towards 100% 

 
The retrieved data was analyzed off-line and used to select appropriate features and train the diagnostic and 
prognostic modules.  After training, the diagnostic/prognostic software was connected on-line with the chiller to 
detect failures and predict time-to-failures. 
 
 
3.1 EXPERIMENTAL RESULTS 
The first interesting aspect of the collected data was the poor resolution that was available from some of the sampled 
sensor data.  Some data were represented by integer values which introduces high signal-to-noise ratio.  A graph of 
the microprocessor data is shown in Figure 13 along with a graph of data taken using LabVIEW (a data acquisition 
product from National Instruments which had higher data resolution) in Figure 14.  Since we intended to utilize the 
microprocessor data, a low pass filter was designed to smooth out the data so that it resembled that from LabVIEW. 
 

 
Figure 13. Microprocessor Data                                     Figure 14. LabVIEW Data 

 
The mode identification module selected four different operating modes of interest: Off, Startup, Normal, and 
Shutdown modes.  Oil valves which were initiated during chiller startup and shutdown operations were measured to 
determine the mode.  The mode identification module worked correctly during off-line and on-line testing by GTC. 
 
The features that were used in the feature extraction module were: 
 

• Chilled Water Inlet Pressure Slope (CTF) 
• Condenser Water Inlet Pressure Slope (CTF) 
• Compresser Discharge Pressure Slope (RCL) 
• Evaporator Liquid Temperature Slope (RCL) 
• Motor Current Slope (RCL) 
• Surge Load &VGD Boundary Line (CSurge) 
• Stall Load & VGD Boundary Line (CStall) 

 
These features were selected from analysis directly from the data collect from the seeded failures.   
 
After the diagnostics and prognostics modules were trained off-line on the data, on-line testing began.  On-line 
operation of the diagnostics/prognostics software consisted of gathering data into the database from the 
microprocessor periodically (0.5 sample/ sec) and performing the diagnostic/prognostic evaluation while operating 
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the chiller.  Modes were changed and failures were seeded while PEDS was running on-line.  Only a few on-line 
tests were performed for each failure mode on the chiller due to time constraints.  The software identified the mode 
and detected seeded failures correctly from these few tests.  The prediction result from the DWNN on a seeded 
refrigerant charge low failure is shown in Figure 15.  A CPNN result is shown in Figure 16 demonstrating the 
bounds on the predicted time-to-failure. 
 

 
Figure 15. DWNN predicted time-to-failure. 

 
 

   
Figure 16. CPNN time bounds on DWNN prediction. 

 
 
 
4. CONCLUSIONS 
 
Diagnostics and prognostics systems are essential tools for the CBM approach.  It is important not only to detect and 
identify failures early, but also to predict when impending failures become catastrophic.  This prediction information 
will aid in the optimal scheduling of maintenance actions which is one of the main goals of CBM.   
 



The approach presented in this paper is a data-driven approach where data is collected and prediction algorithm 
parameters are trained on- and off-line.  Unlike statistical approaches which require a plethora of historical data to 
obtain representative distributions, this intelligent architecture learns from incoming data while operating on-line.  
Thus, this prediction architecture is adaptive to changes in failure dynamics.    
 
One problem which affects all diagnostic/prognostic systems is that of obtaining failure data.  Failure data can be 
difficult to gather or may not even exist.  Thus, seeded failures are an economical solution provided they are 
designed properly with the aid of experts familiar with the system operation.  
 
Feature selection is an important part of the diagnostic/prognostic design process.  Without careful consultation with 
system experts, the selected features could cause high false failure alarms rates and incorrect prediction results.  By 
utilizing resources such as maintenance personnel expertise, a list of possible features could be selected and fine 
tuned through automated optimization techniques such as feature selection.   
 
A future enhancement that would increase the reliability of this framework is to merge the results of PEDS with 
model-based methodologies using appropriate data fusion techniques. 
 
The PEDS architecture provides a generic framework for diagnostics and prognostics for a wide variety of complex 
systems.  It requires off-line training to ensure some degree of immediate performance and then proceeds to learn 
from new data.  The diagnostics and prognostic modules require carefully designed seeded failure experiments to 
ensure that the correct data was gathered for parameter training.  Utilizing both data fusion and expert advice, the 
confidence in the detection and prediction algorithms will increase.  A CBM approach utilizing intelligent systems 
concepts such as PEDS will ensure economical use of maintenance resources with high degree of flexibility and 
autonomy.  
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