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The mode-to-mode transition problem involves taking initial states in the start mode to
the equilibrium point of the goal mode, where each mode of operation corresponds to an
operating regime about an equilibrium point. Like the problem of dynamic transitions
between various equilibria, there is no consistent theory that deals with the mode-to-mode
transition problem. This paper presents a method of designing mode-to-mode controllers
by blending the start and goal mode controllers. The blending gains are determined by
the phase portrait assignment algorithm. The phase portrait assignment algorithm is a
systematic technique that uses dynamic programming and center-point cell mapping to
design fuzzy logic controllers. A hover mode to forward flight mode controller for a
small-scale helicopter is synthesized to illustrate the design methodology. Simulation
results show that the controller is able to transition stably from hover to forward flight.
Finally, sensitivity analysis of the hover to forward flight controller is performed for small
parameter perturbations. Q 2000 John Wiley & Sons, Inc.

1. INTRODUCTION

Large-scale dynamical systems such as airplanes, helicopters, automobiles,
and industrial processes have several operating modes that require stable
transitions between them. An operating mode is considered to be a region about
the mode’s equilibrium point in which linear approximations are valid. The
mode-to-mode problem involves taking initial states in the start mode to the
equilibrium point of the goal mode. The mode-to-mode problem can be consid-
ered as a transition problem between the two modes’ equilibrium points with the
assumption that the controller designed for the latter problem takes points in a
small neighborhood of the start mode’s equilibrium point to a neighborhood of
the goal mode’s equilibrium point. Three methods that can be applied to the
design of mode-to-mode controllers are gain scheduling, phase-space control
system design, and blending mode controllers 1]3.

Although, there is no consistent theory that deals with dynamic transitions
between various equilibria, gain scheduling has been used to design equilibrium-
to-equilibrium controllers. The technique of gain scheduling approximates a
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nonlinear control system with a piecewise-linear one and designs a linear
controller for each linear piece. In gain scheduling, the transition between
equilibria is governed normally by an auxiliary scheduling variable.1,4 The rule of
thumb to ensure stability is that the scheduling variable should vary slowly with
respect to the states. The disadvantages associated with gain scheduling include
a reliance on a long trial-and-error design process, a lack of adaptability to
on-line variations, and poor robustness to uncertainties. Gain scheduling has
been applied to process control5 and the design of flight control systems for high

6 Ž .performance aircraft. The gain scheduling procedure is generally as follows: 1
for the start and goal equilibrium points, a local controller is designed using

Ž .linear techniques; 2 then a viable path is chosen between the two equilibria
Ž .depicting the desired transition between them; 3 afterward, N points are

chosen along the path between equilibrium to equilibrium and linearstart goal
models of the system are created at these points; a linear controller is designed

Ž .for each linear model having gain K , where 1 F n F N; 4 finally, a multidi-n

mensional interpolation technique is used to interpolate between the gains K ,n
for the equilibrium to equilibrium transition.start goal

The second approach of designing mode-to-mode controllers is based on
phase-space design techniques. The Phase Space Navigator and Perfect Moment
are two programs that use knowledge about the phase-space dynamics of a
nonlinear system to synthesize nonlinear controllers between specified phase-
space points. The Phase Space Navigator2 finds optimal phase-space paths from
an initial state to a goal state that consist of a sequence of path segments
connected at intermediate points where the control parameter changes. It has
two main modules, a planning module and a tracking module. The former
synthesizes a reference trajectory based on the dynamics of the nominal model.
The latter follows the reference trajectory and reactively corrects for local
deviations. The Perfect Moment program uses the phase portraits constructed
by varying the control parameter to synthesize a segmented path between two
specified phase-space points. The search algorithm first finds a gross path
between the regions surrounding the origin and destination, then iteratively
reinvokes the mapping module on finer scales and uses those maps to find
segments that connect the ends of the gross path to the origin and destination.
Afterward, the system is routed along the segmented path by appropriate
switches of the control parameter at the segment junctions. These two programs
can be applied to the design of mode-to-mode controllers by specifying the
equilibria of the two modes as phase-space points in which to form a segment.

In Ref. 3, a method of heuristically blending mode controllers by fuzzy logic
was discussed in designing a forward flight mode to hover mode controller. Two

Ž .methods were used in blending the mode controllers: 1 blending the output of
Ž .the two mode controllers or 2 blending the reference setpoint of each mode

Ž . Ž .controller. It was determined that 1 the outputs actuator signals of each
mode controller should be blended if the coupling between the modes is small;

Ž . Ž .and 2 the inputs set points of each mode controller should be blended if the
coupling between the modes is high.
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In this paper, a method is presented to design mode to mode fuzzy
controllers. The method is based upon the blending of the output of the start
and goal mode controllers using fuzzy logic. The blending weights for each
output are determined by an algorithm called the Phase Portrait Assignment

Ž .Algorithm PPAA . Finally, this method is illustrated in the design of a hover
mode to forward flight controller for a small-scale helicopter.

Ž .The Phase Portrait Assignment Algorithm or PPAA has been applied to
Ž . 7the design of fuzzy logic controllers FLCs for an automotive engine, the hover

mode of a small-scale helicopter,8,9 the single link robot arm,10 and the nonlin-
ear inverted pendulum problem.11 The stability of the FLCs designed by the
PPAA has been analyzed in Refs. 10, 12, and 13. The PPAA is similar to Hsu’s
approach14 except that it produces an optimal control table containing fuzzy,
rules.11 The algorithm partitions both the state space and control variable space
into cells approximated by their center points. The transition from one cell to
another is accomplished via a center-point mapping of the cells under the
applied control action. Simulation is performed until all the cells in the state
space have been examined for all possible control action cells. Then, a modified
A* algorithm is applied to a database containing simulation data to create an
optimal control table. Finally, fuzzy control rules are generated from the optimal
table entries by fuzzifying the borders of cells in the state and control action
spaces.11

The paper is organized as follows. In Section 2 the design of mode-to-mode
controllers is described. This includes a brief discussion of cell-to-cell mapping,
the phase portrait assignment algorithm, and sensitivity analysis. A heuristic
model of a small scale helicopter is presented in Section 3, along with the design
parameters for the hover to forward flight controller. In Section 4, a hover mode
to forward flight mode controller is simulated with the small-scale helicopter.
Afterward, sensitivity analysis is performed on the controller to determine
parameters for optimum sensitivity. Finally, Section 5 contains conclusions.

2. DESIGN OF MODE-TO-MODE CONTROLLERS

A. Cell-to-cell Mapping

1. Introduction

Ž .15Cell-to-cell mapping or cell mapping is a powerful computational tech-
nique for analyzing the global behavior of nonlinear dynamical systems. It
simplifies the task of analyzing a continuous phase space by partitioning it into a
finite number of disjoint cells and approximating the system trajectories as cell
transitions. The cell mapping is used mainly to determine stable periodic
solutions and the corresponding domains of attraction of nonlinear systems. The
cell mapping method is able to computationally perform global analysis of both
low-order and high-order systems. However, the method has two main draw-

Ž .backs: 1 the time required to obtain a complete characterization of the state
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Ž .space is extremely high and 2 the memory requirements to manage all the data
collected grows exponentially with the system dimension and with the desired
accuracy.

The cell mapping method has been used to analyze the global properties of
coupled van der Pol equations15 in order to determine their limit cycles. The
method has also been used to determine the global behavior of fuzzy dynamical
systems.16 ] 18 Finally, cell mapping was extended by Hsu to optimal control
problems.14,19

2. Cell mapping concepts

The cell mapping technique partitions a continuous state space of a system
into a finite number of disjoint cells. Cells are created by dividing each axis x ofi
an n-dimensional state space into intervals of size h ; each interval is denotedi

Ž .by an integer z such that it contains all x satisfying z y 1r2 h F x Fi i i i i
Ž . w xTz y 1r2 h . A cell z is defined as an n-tuple of intervals z , z , . . . , z . Thei i 1 2 n
union of all cells z yields an integer-valued n-dimensional cell space Z. The
portions of the state space lying outside the region of interest are lumped
together in a single cell called the sink cell.

Cell mapping abstracts the system states in a cell z with the cell center-pointi
c Ž .z . This allows real or point-to-point trajectories in the state space to bei

approximated by cell trajectories in the corresponding cell space. Figure 1
illustrates the approximation scheme for a real trajectory for the discrete time

Figure 1. Cell space approximation technique.
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Ž .system x s g x :kH1 k

x ª x ª x1 2 3

The initial point x in the trajectory that lies in cell z is abstracted by the cell1 1
c X Ž c. ccenter-point z . Then, x s g x , which lies in cell z , is abstracted by z .1 2 1 2 2

X Ž c . cFinally, x s g x in cell z is abstracted by z . This procedure yields the cell3 2 3 3
trajectory:

z ª z ª z .1 2 3

Note that in order to minimize cell mapping errors, it is important that states xX
2

and xX be located as close to each other as possible and lie in the same cells as3
the real trajectory states x and x , respectively.2 3

A cell mapping is formulated as a cell state space function:

C : Z ª Z

Using this function, a k-step trajectory emanating from cell z is written as a cell
sequence:

z ª C z ª C C z ª ??? ª Ck zŽ . Ž . Ž .Ž .

A periodic motion with period K is a sequence of K distinct cells z , m sm
0, . . . , K y 1, satisfying the condition

z s Cm z and z s CK zŽ . Ž .m

An equilibrium cell z is a cell that maps to itself, i.e.,e

z s C zŽ .e e

Such a behavior results in a periodic motion with period 1. The r-step domain of
attraction of a period motion is the set of all cells that are within r-steps of the
periodic motion.

A cell map is constructed using an ‘‘unraveling algorithm’’15 to compute cell
transitions and to identify all existing periodic motions and domains of attrac-
tion. The key to the unraveling algorithm is the computation of an image cell or
one-step transition cell for each cell z within a specified ‘‘cell processing time
period’’ t . The procedure assumes that all points in a cell z end up in the imagem
of cell z within the cell processing time period t . Readers are referred to Ref.m
15 for a detailed presentation of the unraveling algorithm.

Based on the computed image cells and cell trajectories, each cell z is
assigned three numbers that characterize the dynamical behavior of the system:

Ž . Ž .1 A group number G z .
Ž . Ž .2 A step number S z .
Ž . Ž .3 A periodicity number P z .
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Ž .The same group number G z is assigned to all cells in a periodic motion or
Ž .domain of attraction of cell z. The step number S z of a cell z indicates the

number of cell transitions needed to transit from cell z to a cell in a periodic
motion. The period of a periodic motion is expressed by the periodicity number
Ž .P z . The concepts of group number, step number, and periodicity number are

illustrated in Figure 2. It is important to note that cells mapping to states lying
Ž .outside the region of interest sink cell are identified with the sink cell, i.e., they

belong to the same group as the sink cell.

B. Phase Portrait Assignment Algorithm

The phase portrait assignment algorithm is a systematic design procedure
for fuzzy linguistic controllers that uses a hybrid methodology incorporating
cell-to-cell mappings and AI algorithms. This method can be applied to a class
of nonlinear systems which are subjected to dynamic or parametric disturbances.
These issues are addressed by dividing the uncertain domain of interest into a
finite number of manageable quantities and by assigning fuzzy sets to each
linguistic representation; then, the relations that govern the control objectives

Žmay be easily derived since we are dealing with quantitative objectives vector
.fields of invariant or switching manifolds of an infinite point space in terms of

qualitative reasoning that is expressed as a finite set of rules.

1. Method

A detailed description of the phase portrait assignment algorithm and its
fuzzy hypercube implementation platform may be found in Refs. 7, 20, and 21.
The following is an outline of the PPAA method:

v The state and control variable spaces are partitioned into cell-groups, where the
size of each cell-group is determined according to accuracy and tolerance specifi-
cations, and the prevailing time and memory constraints.

Figure 2. Cell characterization parameters.



DESIGN OF MODE-TO-MODE FUZZY CONTROLLERS 663

v The center points of all cell-groups are chosen to anticipate the trajectories from
one subspace to another. For each cell-group the center point is considered as the
initial state for the simulation. Also, for each cell-group a set of admissible
control inputs are applied, and for each control input which is held constant, a
simulation run is performed until the system enters another cell-group or exceeds
the maximum simulation time.

v For each complete simulation run of a constant input the time required for the
transition is stored, as well as the control energy and the Euclidean distance of
the state from the equilibrium point. This effort yields a large database with
information about the global dynamical behavior of the system.

v The next step is to search the accumulated data file and come up with the best
control in terms of minimum time, energy, or error that causes the system starting
in any of the cell-groups to be driven to the target cell-group. The search
procedure is based on a modified A* algorithm. The algorithm is guaranteed to
terminate in a finite number of steps and to find the best path from any node to
the equilibrium node, provided such a path exists.

v Sink cells and periodic cells are thus eliminated before the controller rule based
is derived. Ultimately, each cell transition in an optimal trajectory becomes a
fuzzy control rule. Thus, the number of control rules is equal to the number of
final cell-groups for which an optimal path exists to the target cell.

v The borders of cell-groups in the cell state space and control action space are
fuzzified to generate smooth control actions. Linguistic values defined by func-
tions with centers located at the center-points of cell-groups and ends located at
the center-points of the adjacent cell-groups are employed. The antecedents and
consequents of the final fuzzy control rules are defined using the linguistic values
for the cell state space and control action cell space, respectively. The rules are
fired using a standard fuzzification]inference]defuzzification algorithm.

2. Stability

Although fuzzy logic controllers have been applied to a variety of industrial
applications, fuzzy logic has yet to be widely accepted in the control engineering
discipline. This lack of acceptance is due primarily to the following reasons:
Ž .1 failure to address the problem of stability through analytical methods and
Ž .2 very few tools to evaluate the stability properties of fuzzy logic controllers.
Since fuzzy controllers designed by the PPAA method incorporate information
about the global dynamical behavior of the nonlinear system by cell mapping,
the claim of asymptotic stability was put forth. In Ref. 10, the stability of FLCs
designed by PPAA was analyzed using Lyapunov’s direct method. The Lyapunov
analysis was carried out on the basis of the fact that the PPAA forces the vector
field of the system’s differential equation to be directed toward a small neigh-
borhood containing the equilibrium point. In Ref. 13, an exposition on the
stability of the fuzzy logic controller based on the topology of the fuzzy
center-point mapping was given. The two stability analysis approaches are
implemented without using any model of the plant to be controlled. It should be
noted that a control rulebase which is considered stable in the fuzzy domain
does not have to automatically satisfy an analytical stability criterion. The
control rules of FLCs designed by PPAA should be tested for stability where an
approximate model is available. In Ref. 12, an input]output analysis is devel-
oped for a nearly linear plant that is being controlled by a fuzzy controller. In
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Ž .this method of analysis, 1 the nearly linear assumption of the process setpoint
Ž .control system is verified and 2 the linear part of the system is verified to be

dissipative from an input]output point of view. Afterwards, the stability require-
ments are verified analytically, where possible, or via simulation. Finally, the

Ž .stability of a closed-loop system controller designed via PPAA can be deter-
mined via a Lyapunov-like analysis:

Ž . Ž .1 Determine a Lyapunov function V x, u that is lower bounded.
˙Ž . Ž .2 Show that V x, u is negative semi-definite.
¨Ž . Ž .3 Show that V x, u is bounded.

˙Ž . Ž . Ž . Ž .4 If conditions 1 ] 3 are met then V x, u ª 0 as t ª ` implying that the
closed-loop system is asymptotically stable.

C. Design: Mode-to-Mode Fuzzy Controller

1. Statement of problem

Given a large-scale dynamic interconnected system represented by the
following state equation:

x s F x , u x t s x x g Rn , u g Rm 1Ž . Ž . Ž .˙ 0 0

It is assumed that the system can be decomposed into N interconnected
subsystems S , i s 1, 2, . . . , N where each subsystem represents the modes ofi
operation and the ith subsystem’s state equation is

N

x s f x , u q g x x t s xŽ . Ž . Ž .˙ Ýi i i i i j j i 0 i0
js1 2Ž .i/j

n m ni i ix g R u g R g x g RŽ .i i i j j

Ž .where g x represents the coupling term due to the jth subsystem. How do wei j j
design a fuzzy controller that transitions from a starting mode to a desired mode
of operation?

2. Approach

Let mode and mode denote the pth and the qth subsystem, respectively.p q
Using the PPAA, a mode -to-mode transitional controller is designs withp q
knowledge about the states of mode and mode , and the outputs of thep q
mode -and-mode controllers. The outputs of the mode -to-mode controllerp q p q
are determined by blending the individual outputs of the mode and modep q
controllers. The blending weights for each mode controller are determined by
the PPAA. The following is an outline for the design of the mode -to-modep q
controller.
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a. Design local controllers for mode and modep q

For the operating modes mode and mode , models are constructed thatp q
capture their local dynamics. Afterwards, linear or nonlinear state feedback
controllers are designed for the two operating modes. The controllers are
designed to regulate initial states belonging to mode and mode to thep q
equilibrium point of mode and mode , respectively. Figure 3 shows the feed-p q
back structure of the mode controllers, where the equilibrium point of modep
and mode is the desired command.q

Equation 3 and 4 are the dynamical equations of mode and mode ,p q
respectively:

x s f x , u x t s x 0 x g Rn p , u g Rm pŽ . Ž .˙p p p p p 0 p p p
3Ž .

Uu s w x y xŽ .p p p p

x s f x , u x t s x 0 x g Rn q , u g Rm qŽ . Ž .˙q q q q q 0 q q q
4Ž .

Uu s w x y xŽ .q q q q

where xU and xU denote the equilibrium points of mode and mode , respec-p q p q
tively; w and w are linear or nonlinear functions of x and x .p q p q

b. Model combined dynamics of mode and modep q

A model of the dynamical system is constructed that incorporates the
dynamics of mode , mode and their corresponding coupling dynamics:p q

x s f x , u x t s x 0 x g Rn p q , u g Rm p q 5Ž . Ž . Ž .˙p q p q p q p q 0 p q p q p q

w T T xTwhere x is the vector of distinct elements of x x ; the vector u is thep q p q p q
w T T xTvector of distinct elements of u u ; x and x denote the states of modep q p q p

and mode , respectively; u and u denote the control inputs of mode andq p q p

Figure 3. Block diagram of mode and mode feedback systems.p q
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mode , respectively. Given the local models of mode and mode , determining aq p q
model of the combined dynamics of mode and mode is really a problem ofp q

Ž . n p Ž . n qmodeling the coupling terms of Eq. 2: g x g R and g x g R . Thep q q q p p
coupling dynamics can be modeled by invoking first principles or produced
through experimental data. In the latter case, neural network, fuzzy or neuro-
fuzzy models can be constructed.

c. Determine the region of interest and the partition
of the x phase spacep q

A region of interest of the phase space belonging to x is chosen such thatp q
it contains the operating points of mode , mode and any correspondingp q
transitional paths between the two modes, if they exist. Constraints on x canp q
be used to determine the maximum region of interest. Choosing a large region
of interest will generally result in more partitions for each state of x to meet ap q
desired cell resolution; and more partitions for each state of x will lead top q
more cells in the phase space, which will lead to a longer time to perform the
phase space simulation. However, choosing a small region of interest increases
the chance of excluding possible paths between mode and mode . Therefore,p q
the region of interest should be determined on the basis of the system’s
dynamics. The region of interest of the phase space is described by the following
inequality:

x - x - x for i s 1, . . . , n 6Ž . Ž . Ž . Ž .p q , min p q p q , max pi i i

Ž . Ž . Ž .where x is the ith state of x ; x and x denote thep q i p q p q, min i p q, max i
Ž .minimum and maximum values of x , respectively. The phase space isp q i

Ž .partitioned to have a desired cell resolution such that i a tolerance specifica-
Ž .tion is met and ii the equilibrium points of mode and mode are in differentp q

cells near the center of their respective cells. The following describes the
tolerance specification for the ith state of x :p q

x y xŽ . Ž .p q , max p q , mini itolerance G 7Ž . Ž .i N q 1i

where N is the number of interval divisions along the ith state of x . Thei p q
Ž . Ž .following expressions determine the relationship of N . x and xi p q, min i p q, max i

such that the equilibrium points of mode and mode can be placed in differentp q
cells near the center of their respective cells:

y1p p pxŽ . N q 1 q l l centerp q , min i i i i is N q 1 ?Ž . q q qi ½ 5N q 1 q l l centerxŽ . i i i ip q , max i

x y xŽ . Ž .p q , max p q , mini ip q< <center y center G 8Ž .i i N q 1i
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where center p is the ith component of mode ’s equilibrium point represented ini p
x space; center q is the ith component of mode ’s equilibrium point repre-p q i q

p Ž . p qsented in x space; l denotes the interval of x in which center lies; lp q i p q i i i
Ž . q p q < p q <denotes the interval of x in which center lies; 1 F l , l F N , l y l G 1,p q i i i i i i i

and 1 F i F n . The number of cells in the region of interest of x isp q p q

npq

N 9Ž .Ł i
is1

d. Determine the region of interest and partition
of the blending weights phase space

Assuming the outputs of the mode -and-mode controllers are linearlyp q
blended, the mode -to-mode controller C will have the formp q p q

C ? s K x ? u q K x ? u 10Ž . Ž . Ž . Ž .p q p p q p q p q q

Ž . Ž . Ž Ž ..where K x and K x are the blending matrices; dim K x s m =p p q q p q p p q p q
Ž Ž .. Ž .m and dim K x s m = m ; m elements of K x are nonzero andp q p q p q q p p p q

Ž . p1 p2 p m pm elements of K x are nonzero. Let k , k , . . . , k andq q p q
q1 q2 qm q Ž . Ž .k , k , . . . , k denote the nonzero elements of K x and K x , respec-p p q q p q

Ž . Ž .tively. These nonzero elements of K x and K x are partitioned intop p q q p q
admissible control inputs having the ranges

k pr F k pr F k pr for r s 1, . . . , mmin max p

k qr F k qr F k qr for r s 1, . . . , m 11Ž .min max q

satisfying the following conditions

Ž . Ž .a If u is a control input belonging only to mode thenpq i p

u - k pr ? u - u 12Ž . Ž . Ž . Ž .pq , min p p q , maxi r i

Ž . Ž .where u corresponds to u for some integer r.p r p q i

Ž . Ž .b If u is a control input belonging only to modepq i q

u - k qr ? u - u 13Ž . Ž . Ž . Ž .pq , min q p q , maxi r i

Ž . Ž .where u corresponds to u for some integer r.q r p q i

Ž . Ž .c If u is a control input belonging to mode and modepq i p q

u - k pr ? u q k qs ? u - u 14Ž . Ž . Ž . Ž . Ž .pq , min p q p q , maxi r s i

Ž . Ž . Ž .where u and u correspond to u , for some integers r and s, wherep r q s p q i
Ž . Ž . Ž .u is the ith element of u ; u and u denote the minimump q i p q p q, min i p q, max i

Ž . Ž . Ž .and maximum values of u , respectively; u and u denote the r th andp q i p r q s
Ž p1 p2 pm psth elements of u and u , respectively. Let k s k , k , . . . , k ,p q p q

q1 q2 qm q.k , k , . . . , k .
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The elements of k are partitioned heuristically. The number of cells inp q
the region of interest of k isp q

m qmp q

M 15Ž .Ł i
is1

where M is the number of interval divisions along the ith element of k .i p q

e. Determine the nonzero elements of K and K in order top q
transition from mode to modep q

The PPAA uses the region of interest and the partition information of xp q
and k to produce a fuzzy controller that can be used to blend the outputs ofp q
the mode and mode controllers to obtain a mode -to-mode transition. Thep q p q
inputs and outputs of the fuzzy controller are x and k , respectively. Thep q p q
elements of k are determined by the compositional rule of inference andp q
the modified mean-of-maxima defuzzifier. The fuzzy linguistic rules for the
fuzzy controller have the form

If x is L and ??? and x is LŽ . Ž .p q Ž x . p q Ž x .n1 p q 1 p q np q pq

Then k is L and ??? and k is L 16Ž .Ž . Ž .p q Žk . p q Žk .m qm1 p q 1 p q mp q pqm q

Ž . Ž . Ž Ž .. Ž Ž ..where x and k are fuzzy representations for x t and k t , thep q i p q i p q i p q j
Ž . Ž .elements of x t and k t , respectively; L and L are linguisticp q p q Ž x . Žk .p q i p q i

variables such as positive large, negative small, and so on.
Therefore, the mode -to-mode controller will have the formp q

C x , u , u s K x ? u q K x ? uŽ . Ž . Ž .p q p q p q p p q p q p q q

wwhere the nonzero elements of K and K are determined by a n input,p q p q
Ž . xm q m output fuzzy controller.p q

D. Sensitivity Analysis of Mode-to-Mode Fuzzy Controller

Consider a nonlinear autonomous system that includes the dynamics of
mode , mode , and their corresponding coupling dynamics,p q

x s f x , u , a x t s x 17Ž . Ž . Ž .˙ 0 0

where x denotes the n -dimensional state vector, a s a q Da is the r-dimen-p q 0
Ž .sional parameter vector, f is an n -dimensional vector function, u s C x, ap q p q 0

is the m dimensional input vector generated by the mode -to-mode fuzzyp q p q
controller, a is the nominal value of a , Da is the vector of small perturbations0
about the nominal value.



DESIGN OF MODE-TO-MODE FUZZY CONTROLLERS 669

Ž . Ž U .Let x* t s x t, a , x denote the nominal trajectory that satisfies0 0

x* s f x*, u , a x* t s xU .Ž . Ž .˙ 0 0 0

Ž . Ž .Let x t s x t, a , x denote the perturbed trajectory that satisfies0

x s f x , u , a x t s xŽ . Ž .˙ 0 0

Define the error between the nominal trajectory and perturbed trajectory as

e t s e t , a , xŽ . Ž .0

s x ta , x y x t , a , xUŽ . Ž .0 0 0

s x t y x* t 16Ž . Ž . Ž .

Ž .Since x* t converges asymptotically from the equilibrium of mode to thep
equilibrium of mode , then the sensitivity analysis of the mode -to-modeq p q
controller involves examining how close the perturbed trajectory remains to the
nominal trajectory when the system is subjected to small perturbations of plant

Ž .parameters. The stability envelope of x* t , shown in Figure 4, denotes the
Ž .region about x* t in which the perturbed trajectories must be constrained in

Figure 4. Stability envelope of mode -to-mode trajectory.p q
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order for the closed loop system to be considered stable and to have acceptable
performance. The boundaries of the stability envelope satisfy the relationship

x t s x* t q D x ) x* t ) x* t y D x s x t 17Ž . Ž . Ž . Ž . Ž . Ž .max min

where D x is a positive vector. Therefore, the error between the nominal and
perturbed trajectory satisfies the condition

< <e t F D x for i s 1, . . . , n 18Ž . Ž .i i p q

Let us define the performance measure as a lower-bounded function given by

t TV e, t s e t e t dt 19Ž . Ž . Ž . Ž .H
t0

Ž . w xwhere e t is defined in Eq. 16 and t g t , t . The fuzzy sensitivity of the real0 f
Ž .output function, e t, a , with respect to the real parameters a , i s 1, . . . , r, isi

expressed by Ref. 22:

r1 y mD ee w xS t s w s 1 w g 0, 1Ž . Ýa i i1 y w m y w m y ??? yw m1 D a 2 D a r D a is11 2 r

20Ž .

where m and m are membership functions of the deviations and w areD a D e ii

weights that are heuristically chosen to signify the importance of a parameter. If
all parameters are equally important in a specific design, then w s 1rr for all i.i

Ž .The fuzzy sensitivity measure FSM is given by

t Te eFSM t s S t S t dtŽ . Ž . Ž .Ž . Ž .H a a
t0 21Ž .

Te e e e1 2 npqwhere S t s S t S t ??? S t and t g t , t .Ž . Ž . Ž . Ž .a a a a 0 f

The performance measure given in Eq. 19 gives a measure of how close the
perturbed trajectory is to the nominal trajectory when the system is subjected to
small parameter perturbations. The fuzzy sensitivity measure gives a measure of
how large the sensitivities of the perturbed trajectories are for small parameter

Ž . Ž . eiŽ .perturbations. Since we want x t to remain close to x* t and S t to bea

small, then the sensitivity analysis will involve finding the set of parameter
perturbations that minimize Eqs. 19 and 21. However, in general V does notmin
correspond to FSM . Therefore, when attempting to select optimum parame-min
ters for robust performance, relaxation techniques will be used to compromise

Ž . eiŽ .between minimizing the trajectory error e t and S t over the time intervala

w xt , t .0 f
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Figure 5. Fuzzy set for small perturbations and trajectory deviations.

The sensitivity analysis procedure is as follows:

v Simulate the system using the nominal parameter values.
v Determine the membership functions m and m of the deviations for DaDa D e ii i

and De .i
Figure 5 shows the fuzzy set for small parameter perturbations and trajectory
deviations from the nominal trajectory.

v Determine FSM and FSM .min max
Figure 6 shows the fuzzy set for linguistic values of ‘‘not sensitive,’’ not quite
sensitive,’’ ‘‘quite sensitive,’’ ‘‘sensitive,’’ and ‘‘very sensitive.’’

v Find V such that the FSM has linguistic value of ‘‘not sensitive.’’min

Figure 6. Fuzzy sensitivity measure.
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3. EXAMPLE: DESIGN OF HOVER TO FORWARD FLIGHT
FUZZY CONTROLLER

A. Parametric Model of Helicopter’s Forward Dynamics

The approach discussed in Section 2c was used to design a hover to forward
Ž .flight FF transition controller for the following model representing the longitu-

dinal channel dynamics of a small scale helicopter constrained to have no
vertical motion; only longitudinal and pitch rotation motions are allowed:

X s X ? m q X ? mhov hov FF FF

M s M ? m q M ? mhov hov FF FF

X
x s y g ? tan uŽ .¨

m ? cos uŽ .
M

ü s
IY

˙ ˙X s X q X x y x q X u y u˙ ˙Ž . ˙ ž /hov trim, hov x , hov trim, hov u , hov trim, hov˙

q X d y dŽ .d , hov e e , trim, hove

˙ ˙X s X q X x y x q X u y u˙ ˙Ž . ˙ ž /FF trim, FF x , FF trim, FF u , FF trim, FF˙

q X d y dŽ .d , FF e e , trim, FFe

˙ ˙M s M q M x y x q M u y u˙ ˙Ž . ˙ ž /hov trim, hov x , hov trim, hov u , hov trim, hov˙

q M d y dŽ .d , hov e e , trim, hove

˙ ˙M s M q M x y x q M u y u˙ ˙Ž . ˙ ž /FF trim, FF x , FF trim, FF u , FF trim, FF˙

q M d y dŽ .d , FF e e , trim, FFe

¡ < <1 if x - 3˙
< <0 if x y 17 - 3˙~m shov x y 14˙

y if 3 F x F 14˙¢ 11

¡ < <0 if x - 3˙
< <1 if x y 17 - 3˙~m sFF x y 3

if 3 F x F 14˙¢ 11
¨ 2Ž .where x, u , and d represent the forward acceleration ftrs , pitch angle¨ e
Ž 2 . Ž .acceleration radrs and longitudinal cyclic input rad , respectively. X repre-

sents the aerodynamic force along the ‘‘X axis’’ and M represents the pitching
moment about the ‘‘Y axis.’’ Figure 7 shows the axis system of the helicopter
with respect to the sideview. The aerodynamic parameters and corresponding
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Figure 7. Side view of helicopter’s axis system.

trim values for the hover and forward flight are given in Table I. These constant
values were calculated by a trim analysis program using physical parameters
from a Xcell 300 helicopter in hover and forward flight. The state vector of the

T ˙ Tw x w xhelicopter model is x x x x s x x u u . It is assumed that the˙ ¨1 2 3 4
output vector of the model is the same as the state vector.

In order to perform sensitivity analysis the model can be transformed into
the form

X
x s y g ? tan uŽ .¨

a c ? cos uŽ .˜3 31

M
ü s

a c˜6 61

X s X ? m q X ? mhov hov FF FF

M s M ? m q M ? mhov hov FF FF

˙X s a c q c D x q c Du q c Dd˜ ˙Ž .hov 1 11 12 hov 13 hov 14 e , hov

˙X s a c q c D x q c Du q c Dd˜ ˙Ž .FF 2 21 22 FF 23 FF 24 e , FF

˙M s a c q c D x q c Du q c Dd˜ ˙Ž .hov 4 41 42 hov 43 hov 44 e , hov

˙M s a c q c D x q c Du q c Dd˜ ˙Ž .FF 5 51 52 FF 53 FF 54 e , FF

where the parameters have the following values:

a s 10.00 is the nominal gain for the hover aerodynamic force˜1

a s 10.00 is the nominal gain for the FF aerodynamic force˜2

a s 10.00 is the nominal gain for the helicopter’s mass˜3
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Table I. Aerodynamic parameters and the corresponding trim values.

Value Description

X y0.0400 partial derivative of X w.r.t. x at hover˙xrhov˙
˙X 1.1675 partial derivative of X w.r.t. u at hoveru̇ , hov

X 21.2482 partial derivative of X w.r.t. d at hoverd , hov ee
X y0.1011 trim value of aerodynamic force X at hovertrim, hov
X y0.0019 partial derivative of X w.r.t. x at forward flight˙x, FF˙

˙X 1.2018 partial derivative of X w.r.t. u at forward flightu̇ , FF
X 26.9988 partial derivative of X w.r.t. d at forward flightd , FF ee
X y0.5411 trim value of aerodynamic force X at forward flighttrim, FF
M 0.0000 partial derivative of M w.r.t. x at hover˙x, hov˙

˙M y1.8769 partial derivative of M w.r.t. u at hoveru̇ , hov
M y43.4060 partial derivative of M w.r.t. d at hoverd , hov ee
M 0.0000 trim value of aerodynamic moment M at hovertrim, hov
M 0.0000 partial derivative of M w.r.t. x at forward flight˙x, FF˙

˙M y1.6336 partial derivative of M w.r.t. u at forward flightu̇ , FF
M y37.4916 partial derivative of M w.r.t. d at forward flightd , FF ee
M 0.0000 trim value of aerodynamic moment M at forward flighttrim, FF
x 0.0000 trim value of forward velocity x at hover˙ ˙trim, hov
˙ ˙u 0.0000 trim value of pitch angle velocity u at hovertrim, hov
d y0.0021 trim value of longitudinal input d at hovere, trim, hov e
x 17.0000 trim value of forward velocity x at forward flight˙ ˙trim, FF
˙ ˙u 0.0000 trim value of pitch angle velocity u at forward flighttrim, FF
d y0.0421 trim value of longitudinal input d at forward flighte, trim, FF e
u y0.0037 trim value of pitch angle u at hovertrim, hov
u y0.0198 trim value of pitch angle u at forward flighttrim, FF
m 0.8488 mass of the helicopter
I 0.7656 moment of inertia along Y axisY

a s 10.00 is the nominal gain for the hover aerodynamic moment˜4

a s 10.00 is the nominal gain for the FF aerodynamic moment˜5

a s 10.00 is the nominal gain for the moment of inertia along the Y axis˜6

and the constant values are

c s y0.0101 c s y0.0040 c s 0.1168 c s 2.124811 12 13 14

c s y0.0541 c s y0.0002 c s 0.1202 c s 2.699921 22 23 24

c s 0.084931

c s 0.0000 c s 0.0000 c s y0.1877 c s y4.340641 42 43 44

c s 0.0000 c s 0.0000 c s y0.1634 c s y3.749251 52 53 54

c s 0.076661
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B. Hover to Forward Flight Mode Controller

The following control law was used for the hover to FF controller

˙ ˙ ˙ ˙d s d x , u , u ? K x , x , u , u q d x , x , u , u ? K x , x , u , uŽ . Ž . Ž . Ž .˙ ˙ ¨ ˙ ¨ ˙ ¨e e , hov hov e , FF FF

Ž . Ž .where d ? and d ? are fuzzy regulators for the hover and FF modes.e, hov e, FF
Ž . Ž .Note that d ? , d ? , and d are scalar. Figures 8 and 9 show the structuree, hov e, FF e

of the hover and forward flight controllers.
The hover and FF controllers regulate about the operating points

T T˙ w xw xx x u u s 0.0000 0.0000 y0.0037 0.0000˙ ¨
T T˙ w xw xx x u u s 17.0000 0.0000 y0.0198 0.0000˙ ¨

˙ ˙Ž . Ž .respectively. The scalar gains K x, x, u , u and K x, x, u , u are determined˙ ¨ ˙ ¨hov FF
wvia the PPAA such that closed-loop system transitions from 0.0000 0.0000

Figure 8. Structure of hover mode controller.
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Figure 9. Structure of forward flight mode controller.

xT w xTy0.0037 0.0000 to 17.0000 0.0000 y0.0198 0.0000 in minimum time.
Table II shows the parameters used by PPAA to design a minimum-time hover
to FF transition controller, while Figure 10 shows the structure of this con-
troller. A minimum-squared-error or minimum-gain-control transitional con-
troller could also be designed, along similar lines.

Table II. PPAA parameters used to design hover to FF transition controller.

Number of
Max Value Min Value Desired Value Divisions

x 17.6296 y0.3148 17.0000 56˙
x 2.5000 y0.5000 0.0000 5¨
u 0.0124 y0.1164 y0.0198 7
u̇ 0.2400 y0.2400 0.0000 5

k 1.0625 y0.0625 0.0000 17hov
k 1.0625 y0.0625 1.0000 17FF
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Figure 10. Structure of hover to FF transition controller.

4. RESULTS

A. Simulation with Nominal Parameters

Figures 11]17 show the simulation results of the hover to FF transition
controller applied to the helicopter described above. Figures 11]14 show that
the helicopter was able to stably transition from the hover mode to the FF

w xTmode, as desired. The helicopter went from 0.0000 0.0000 y0.0037 0.0000
w xTto 16.9993 y0.0008 y0.0198 y0.0000 within 14 seconds and had a rise

time of about 9.2 seconds. The velocity, acceleration and pitch angle profiles
were fairly smooth. However, the pitch rate and control input profiles were not
smooth. This is due to the fact that the controller was designed with one rule
firing while the fuzzy implementation fires multiple rules.

B. Sensitivity Analysis

The sensitivity analysis of the mode -to-mode fuzzy controller ishover FF
studied when a and a are perturbed. This analysis is performed so that the3 6
perturbed trajectories are within the stability band represented by the following
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Figure 11. Plot of x versus time.˙

expression:

< <e t F D x for i s 1, . . . , 4Ž .i i

T Tw x w xwhere D x s D x D x D x D x s 0.50 0.80 0.01 0.10 .1 2 3 4

Ž . Ž .The parameters for Da and Da are given below:m1 m 2

T Tw xDa Da s 2 2Ž . Ž .m m1 2

The maximum and minimum fuzzy sensitivity measures were determined to be

FSM s 1124.5000 at Da s y0.1000 Da s y0.0010max 3 6

FSM s 0.1983 at Da s y0.1000 Da s y1.0000min 3 6

The linguistic values of ‘‘not sensitive,’’ ‘‘not quite sensitive,’’ ‘‘quite sensitive,’’
‘‘sensitive,’’ and ‘‘very sensitive’’ are assigned to FSM in the following manner:

If 0.1983 F FSM F 140.5377 then FSM is ‘‘not sensitive’’
If 140.5377 - FSM F 421.6131 then FSM is ‘‘not quite sensitive’’

If 421.6131 - FSM F 702.6885 then FSM is ‘‘quite sensitive’’

If 702.6885 - FSM F 983.7639 then FSM is ‘‘sensitive’’
If 983.7639 - FSM F 1124.5000 then FSM is ‘‘very sensitive’’
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Figure 12. Plot of x versus time.¨

Figure 13. Plot of u versus time.
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˙Figure 14. Plot of u versus time.

Figure 15. Plot of k versus time.hov
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Figure 16. Plot of k versus time.FF

Figure 17. Plot of d versus time.e
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The optimum sensitivity was found to occur at Da s y0.0800, Da s y0.50003 6
where V s 0.0181 and FSM s 4.7031. The FSM value of 4.7031 correspondsmin
to a linguistic value of ‘‘not sensitive.’’ Figures 15]18 show the sensitivity of x,̇

˙x, u , and u with respect to a , and the plots of the performance and fuzzy¨
sensitivity measure for the optimum sensitivity.

5. CONCLUSIONS

Large-scale dynamical systems that have several operating modes require
stable transitions between them. A design methodology for mode-to-mode
controllers using the phase portrait assignment algorithm has been presented.
The mode-to-mode controller design employs a hierarchical control scheme to
blend the outputs of the controllers designed for the start and goal modes of
operation. The phase portrait assignment algorithm determines the gains needed
to blend the mode controllers such that the system transitions from the start
mode to the goal mode of operation. This methodology was illustrated in the
design of a hover mode to forward flight mode controller of a small helicopter.
Simulation results show that the controller was able to transition the helicopter
stably from hover flight to forward flight. Finally, sensitivity analysis of the hover
mode to forward flight mode controller is performed for small parameter
perturbations. The sensitivity analysis involved finding the optimum sensitivity
such that the deviations and the sensitivity of the deviations from the nominal

Figure 18. Sensitivity of x and x for optimum sensitivity.˙ ¨
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˙Figure 19. Sensitivity of u and u for optimum sensitivity.

Figure 20. Performance measure for optimum sensitivity.
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Figure 21. Fuzzy sensitivity measure for optimum sensitivity.

mode-to-mode trajectory is minimized. The methodology may be extended to
include all critical mode transitions for a vehicle like a helicopter. Its application
to small autonomous or unmanned vehicles will prevent unstable operating
conditions when the latter undergo extreme or difficult maneuvering. A robust
stability analysis of the dynamic system has been carried out and is presented in
a companion paper.23

This work has been partially supported by DARPA under the Software Enabled
Controls program, Contract No. E21-K59; their sponsorship and continued support is
gratefully acknowledged.
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