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Abstract 

This paper introduces an integrated 
methodology to monitor and diagnose machine 
faults in complex industrial processes such as 
textile and fiber manufacturing facilities. The 
approach is generic and applicable to a variety of 
industrial plants that operate critical processes 
and may require continuous monitoring and 
maintenance procedures. A dual approach is 
pursued: High-bandwidth fault symptomatic 
evidence, such as vibrations, current spikes, etc., 
are treated via a feature extractodneural network 
classifier construct while low-bandwidth 
phenomena, such as temperature, pressure, 
corrosion, leaks, etc., are better diagnosed with a 
fuzzy rule base set as an expert system. The 
technique is illustrated with typical examples 
from benchmark processes common to many 
industrial plants. 

1. Introduction 

The manufacturing and industrial sectors of 
our economy are increasingly called to produce 
at higher throughput and better quality while 
operating their processes at maximum yield. As 
manufacturing facilities become more complex 
and highly sophisticated, the quality of the 
production phase has become more crucial. The 
manufacture of such typical products as textiles 
and fibers, aircraft, automobiles, appliances, etc, 
involves a large number of complex processes 
most of which are characterized by highly 
nonlinear dynamics coupling a variety of 
physical phenomena in the temporal and spatial 
domains. It is not surprising, therefore, that these 
processes are not well understood and their 
operation is “tuned” by experience rather than 

through the application of scientific principles. 
Machine breakdowns are common limiting 
uptime in critical situations. Failure conditions 
are difficult and, in certain cases, almost 
impossible to identify and localize in a timely 
manner. Scheduled maintenance practices tend to 
reduce machine lifetime and increase downtime, 
resulting in loss of productivity. Recent advances 
in instrumentation, telecommunications and 
computing are making available to 
manufacturing companies new sensors and 
sensing strategies, plant-wide networking and 
information technologies that are assisting to 
improve substantially the production cycle. 

Machine diagnostidprognostics for 
condition-based maintenance involves an 
integrated system architecture with a diagnostic 
module - the diagnostician - which assesses 
through on-line sensor measurements the current 
state of critical machine components, a 
prognostics module - the prognosticator - which 
takes into account input from the diagnostician 
and decides upon the need to maintain certain 
machine components on the basis of historical 
failure rate data and appropriate fault models, and 
a maintenance scheduler whose task is to 
schedule maintenance operations without 
affecting adversely the overall system 
functionalities of which the machine in question 
is only one of its constituent elements. 

This paper addresses issues relating to the 
diagnostic module of the Condition-Based- 
Maintenance (CBM) architecture. Fault 
diagnosis, or equally fault detection and 
identification (FDI), is a mature field with 
contributions ranging from model-based 
techniques to data-driven configurations that 
capitalize upon soft computing and other 
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“intelligent” tools [ 1][2]. Recently, some 
strategic issues and approaches to failure 
detection and identification (FDI) have been 
addressed by several investigators. The first issue 
is the performance of FDI so that detection 
delays and false alarms may be avoided [3]. 
Second, a failure model should reflect a finite 
number of failure modes that are anticipated 
(predictable). Third, the designer is faced with 
the tradeoffs of hardware redundancy and 
software complexity from an implementation 
point of view [4,5]. Fourth, failure detectability 
and identifiability can be described in terms of 
sensitivity and distinguishability of the failure 
modes. Finally, robustness of FDI in the 
presence of modeling errors adds more 
significance to the modeling point of view. Most 
of available FDI strategies are related to the 
multiple model (MM) approach in which 
innovation-based systems or detection estimation 
methods are employed. The MM scheme can use 
existing Kalman filters without any changes and 
a wide range of statistical test procedures such as 
the generalized likelihood ration (GLR) test [4] 
or the sequential probability ratio (SPR) test [6] 
that can be applied to additive failures or event- 
driven faults. For linear systems, the failure 
sensitive filter approach provides a solution to 
FDI. The Beard-Jones detection filters (BJDF) 
[7] or the Luenberger observer filters (LOF) [SI 
may be applied to detect a wide variety of system 
failures (sensors, actuators, components). The 
jump-process formulation (JPF) technique 
handles sudden shifts or jumps in the system 
matrices by mixing the MM method [4]. It has a 
manageable fixed bias size and is still suboptimal 
because of steady-state effects on residuals. 
Other methods include an algorithmic approach 
to FDI [9] and an expert system approach [lo] 
among many alternatives investigated over the 
past years. 

In many practical situations, uncertainty in 
the process can affect the performance of the 
system significantly no matter how the 
uncertainty is described (vagueness or 
ambiguity). This realization provides the 
motivation for a possible fuzzy logic approach to 
FDI. This has the ability to directly describe the 
potential failure modes in the parameters while 
handling a class of nonlinear systems. To resolve 

the actual failure in the system parameters, a 
recursive parameter estimation technique is an 
essential component of FDI. In a soft body of 
consonant evidence, Zadeh’s fuzzy sets or 
membership functions [ l l ]  can be applied to 
continuous decision-making processes whereas in 
a distinct body of crisp evidence we can rely on 
Dempster-Shafer’s belief of plausibility measure 
[ 121. These approaches provide a mathematical 
theory of combining rules of evidence. More 
recently, neural network constructs and wavelets 
have surfaced as potential candidates for fault 
detection and identification. A major innovation 
in the proposed work relates to the utility of 
wavelets, in a neural network setting, for fault 
classification purposes [ 131. 

2. The Diagnostic System Architecture 

Components, machines and processes fail in 
varying ways depending upon their constituent 
materials, operating conditions, etc. Failure 
modes are typically monitored by a sensor suite 
which is intended, for failure analysis purpose, to 
capture those failure symptoms that are 
characteristics of a particular failure mode. 
Consider, for example, the case of a typical 
process such as a slasher or a weaving machine 
in textiles. Typical failure modes may include 
leaks, sensor failures, corrosion, debris: etc. 
which are characteristic of a process failures as 
well as a variety of vibration induced faults that 
are affecting mechanical and electro-mechanical 
process elements. 

The Diagnostic Module 

High-frequency failure 
modes 
(vibrations, etc.): 
The Wavelet Neural Net 
Approach . ,“. ... ,.. .. 

A Two-Prong 
Approach Low-frequency events 

(Temperature, Pressure, 
etc.): 
The Fuzzy Loeir 
Approach 

Figure 1 The two-prong approach of the 
diagnostic module 
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It is generally possible to break down the 
sensor data (and, correspondingly, the 
symptomatic evidence) into tow broad 
categories: The first one concerned with low- 
bandwidth measurements, such as those 
originating from process variables, temperature, 
pressure, levels, etc., while the second 
exemplifies high-bandwidth measurements, for 
example vibrations, current spikes, etc (see 
Figure 1). Failure modes associated with the first 
category may develop slowly and data is sampled 
at slow rates without loss of trending patterns. 
High-frequency phenomena though, such as 
those accompanying a bearing failure, require a 
much faster sampling rate in order to permit a 
reasonable capture and characterization of the 
failure signature. Moreover, process-related 
measurements and associated failure mode 
signatures are numerous and may overlap, thus 
presenting serious challenges in resolving 
conflicts and accounting for uncertainty. This 
dichotomy suggests an obvious integrated 
approach to the fault diagnosis problem: Process 
related faults may be treated with a fuzzy rule 
base set as an expert system while high- 
bandwidth (see Figure 2) faults are better 
diagnosed via a feature extractorlneural network 
classifier topology. This approach is adopted 
below in addressing typical machinery failures. 

Plant 

The basic diagnostic architecture is generic 
and applicable to a wide variety of complex 
engineered systems and industrial processes. A 
combined fuzzy logic/Dempster-Shafer approach 
is used to determine if a failure (or impending 
failure) has occurred and to assign a degree of 
certainty or confidence to this declaration. Figure 
3 depicts the essential elements of the diagnostic 
process. 

_____ Dempster- - degrees of oertainty 

Shafer 
System A 

Preprocessing and Feature Extraction 

Preprocessing - 

The preprocessing and feature extraction unit 
takes raw sampled data from a plant and converts 
it to a form suitable for the fuzzy logic and 
Dempster-Shafer system. It incorporates filtering 
of noise from raw data and extraction of features 
from the filtered data. Feature extraction intends 
to extricate the most important characteristics 
from the filtered data such as slopes, levels, 
relevant frequencies, etc. Feature extraction itself 

Fuzzy 

is a form of filtering and thus leads to false alarm 
rate improvement. 

and Diagnostic 
Feature Extraction System 

Sensor 
..... .. ..... 

Feature 

T 

Inference 
Engine 

1 + I  
Fuzzy Rule Base 
(1) If symptom A is high & symptom B 

is low then failure mode is F1 

Figure 2 Fuzzy diagnostic system layout with 
feature extraction 

Figure 3 The fuzzy logic and evidence theory 
approach 

Fuzzy Rulebase 

Engine 

Figure 4 The fuzzy logic diagnostic system 

3. Fuzzy Diagnostic System 

The fuzzy diagnostic system takes features as 
inputs and then outputs any indications that a 
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failure mode may have occurred in the plant. The 
fuzzy logic system structure is composed of four 
blocks: fuzzification, the fuzzy inference engine, 
the fuzzy rulebase, and defuzzification, as shown 
in Figure 4. The fuzzification block converts 
features to degrees of membership in a linguistic 
label set such as low, high, etc. the fuzzy rulebase 
is constructed from symptoms that indicate a 
potential failure mode. Figure 5 depicts two 
typical rules. Some examples of rules in such a 
rulebase could be: 

If the temperature is low in Tank 1 and the 
pressure is low then the failure mode is Tank 1 
heating element is damaged. 

If the slope of Tankl’s water level is negative 
low and the slope of Tank 1’s pressure is 
negative low then the failure mode is Tank 1 
leaking. 

If Temperature is Low AND Pressure is Low THEN Tank 1 Failure is High 

If Temperature is High AND Presure is Medium THEN Tank 1 Failure is Medium 

Figure 5 A graphical representation of a 
fuzzy rulebase 

The fuzzy rulebase can be developed directly 
from user experience, simulated models, or 
experimental data. Fuzzy outputs are aggregated 
(maximum method) through the fuzzy inference 
engine to determine a degree of fulfillment for 
each rule corresponding to each failure mode. 
The last step defuzzifies the resulting output, 
using the centroid method, to a number between 
0 and 100 (figure 6). This is finally compared to 
a threshold to determine whether or not a failure 
mode should be reported. 

I .  Apply Fuzzy Opention and Implication Methcd 

7 
Rule 1 J 1 /  1 \ 

Rule 2 1;\ 
2. Aggregate All Outputs ( m m m  mthod) 

3. kfuzz i f j  (centroid mthcd) 

Figure 6 Graphical Inference and 
defuzzification 

Dempster-Shafer Theory of Evidence 

Dempster-Shafer theory of evidence is 
incorporated into the system for uncertainty 
management purposes. Its function is to associate 
a degree of belief or certainty to a detected failure 
mode from the fuzzy diagnostic system. It uses 
the same rulebase as the fuzzy diagnostic system 
for consistency. Dempster-Shafer theory takes 
the same features that are fed into the fuzzy 
diagnostic system and places them through the 
same input membership functions. Each sensor is 
considered an expert in this setting. The 
membership values are normalized and ordered 
for each sensor separately. The values are then 
subtracted and assigned to nested mass functions 
in an order form. There is now a single mass 
function for each sensor (i.e. expert). By 
examining the fuzzy rulebase, one can now use 
Dempster’s rule of combination to combine the 
mass functions of the sensors and determine a 
final mass function with failure modes as 
elements. Finally, a degree of certainty is 
calculated and is sent along with the failure mode 
to the output database for maintenance decisions 

4. High-Bandwidth failure Detection and 
Identification 

The Wavelet Neural Network (WNN) 
belongs to a new class of neural networks with 
such unique capabilities as multi-resolution and 
localization in addressing classification 
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problems. For fault diagnosis, the WNN serves as 
a classifier so as to classify the occurring faults 
(see Figure 7). 

Wavelet Neural 
Feature 

Extraction Network Competition 

I t - - - - - - - - - - - -  1- r --+- Actual Fault 

Figure 7 Classification using the wavelet Signature 
neural network 

Critical process variables are monitored via 
appropriate sensors. The data obtained from the 
measurements are processed and features are 
extracted. The latter are organized into a feature 
vector, which is fed into the WNN. Then, the 
WNN carries out the fault diagnosis task. In most 
cases, the direct output of the WNN must be 
decoded in order to produce a feasible format for 
display or action. 

For example, the WNN can be used to 
perform the diagnosis of a bearing failure 
typically found on races, rolling balls and 
lubrication materials. Here, for simplicity, the 
focus is placed on the diagnosis of whether the 
bearing is normal or defective. Through vibration 
measurements, a number of vibration signals for 
a bearing are collected and the peaks of the signal 
amplitude and the signal’s PSD are chosen as the 
features. Such other quantities as the standard 
deviation, cepstrum, DCT coefficients, wavelet 
maps, temperature, humidity, speed, mass, etc. 
can be selected as candidate features. From the 
vibration signals, a training data set is obtained, 
which is then used to train the WNN. 

Once trained, the WNN can be employed to 
perform the fault diagnosis. Signals and their 

PSDs from a normal bearing and a defective one 
are shown in Figure 8. 

For a good bearing; 
features = [0.3960 0.13481 

For a defective bearing: 
features = [4.9120 9.21821 

[0 I] = WNN([0.3960 0.13481) 
===>The bearing is good! 

[ 1 01 = WNN([4.9120 9.21821) 
===> The bearing is defective! 

The results can easily be extended to include 
cases in which multiple fault classes are 
concerned. 

Time Domain - good bearing 
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(a) Signal from a good bearing 

Time Domain - defective bearing 
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(b) Signal from a defective bearing 
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(c) PSD from a good bearing 
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Spectrum 

(d) PSD from a defective bearing 

Figure 8 Signals and their PSD from a 
normal and a defective bearing 

5. Conclusions 

A model-free approach to the problem of 
diagnosing fault conditions has been presented. 
For low-bandwidth process data, a knowledge 
base built as a fuzzy expert system correlates 
fault symptoms to failure modes while addressing 
effectively uncertainty management. Next, high- 
bandwidth data, such as vibration measurements, 
are dealt with in a framework consisting of a 
feature extractor and a classifier. The multi- 
dimensional WNN is an effective and efficient 
tool for classification. The computational burden 
shifts to the feature extraction step where 

appropriate features must be computed from 
signal data that comprise eventually the input 
vector to the network. The WNN approach offers 
additional advantages in terms of learning and 
optimization functions that may be carried out 
off-line or on-line. Furthermore, the neural net 
topology suggests means for parallel processing - 
useful in high frequency processes. The scheme 
show promise as an effective model for the 
analysis of vibration and process data for many 
industrial and other engineered systems. 
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