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In recent years, the aviation industry has seen a large increase in the volume of operations.
The maintenance and improvement of safety at acceptable levels is one of the most important
concerns in civil aviation operations. Reactive methods to aviation safety improvement are
being augmented with proactive and predictive approaches that leverage large amounts of
routinely collected aviation data. Due to the increased availability of airborne sensor data
and improvements in computing power, application of machine learning methods to various
aviation safety problems for identifying, isolating, and reducing risk has gained momentum.
Previous work in this domain has focused on identifying anomalies or abnormal operations
as a first step towards identification of potentially risky situations using aircraft sensor data.
However, most existingmethods rely only on the aircraft data and do not take into consideration
the environment and context in which it is operating. In this paper, a novel framework based
on deep learning methods using autoencoders is proposed to identify anomalies in terminal
airspace operations. Data from multiple sources (aircraft trajectory, weather, traffic/conges-
tion) is fused and utilized in the model development process which has not been attempted
in prior work. The framework is proposed with the central idea of using historical aircraft
trajectory data fused with weather and traffic metrics to build an anomaly detection model to
identify trajectories that deviation from the norm, given a specific context. The framework is
demonstrated on six months of arriving flight data collected for San Francisco International
Airport as a case study. The developed framework has the potential to aid air traffic con-
trollers in identifying high risk situations from a holistic perspective and applying appropriate
mitigation strategies.

I. Introduction
The transformation of aviation systems is occurring at a faster rate than ever before as technologies developed

within various aviation disciplines continue to evolve and coalesce. In recent years, the aviation industry has seen
a large increase in the volume of operations. Aviation demand is driven by economic activity, where the growing
U.S. and world economies provide the foundation for long term aviation growth. According to the Federal Aviation
Administration (FAA), the demand for air travel and traffic is predicted to grow steadily over the next two decades at a
rate of 1.8% over the next 20 years, making efficient and safe operations more important than ever [1]. Along with the
volume of operations, the complexity of air operations is also expected to increase with the introduction of Unmanned
Aircraft Systems (UAS) traffic management (UTM), urban air mobility (UAM) in the National Airspace System (NAS).
With such a large increase in the volume and complexity of expected operations, there is an ever-increasing demand
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for maintaining or improving safety for all aviation operations. In response to air traffic growth, global efforts have
been underway to modernize aviation systems to address current and future air transportation challenges. These global
modernization efforts include the FAA’s Next Generation Air Transportation System (NextGen) [2] portfolio in the U.S.
and the Single European Sky Air traffic management (ATM) Research (SESAR) [3] program in Europe. All global
modernization efforts are long-term plans motivated by increasing efficiency and capacity of airspace systems, while
also maintaining safety.

In the context of current operations, flight trajectory is the core information that is used by the air traffic management
(ATM) system as a basis for distributing flight information to relevant airlines and air traffic control (ATC) units,
facilitating timely coordination between sectors and units, correlating flight data with tracks, monitoring the adherence
of an aircraft with its assigned route, and detecting and resolving conflicts The identification of significant events in
historical aircraft trajectory data falls under the scope of knowledge discovery and information extraction. A category of
applications which is the most popular in the aviation safety domain is anomaly detection using quantitative time-series
data and semi-supervised or unsupervised machine learning techniques. In such applications, historical data recorded
from routine operations is analyzed using machine learning techniques to identify flights or trajectories that deviate from
nominal operations. Anomaly detection is an important step in safety improvement of the air transportation system as
evidenced by the numerous applications in recent years [4–8]. However, an inherent limitation of existing approaches is
that the anomalies are identified only with respect to the aircraft dynamics, trajectory, etc., and do not consider external
factors such as the environmental conditions and/or the state of the system (traffic, congestion, etc.) at the time of
operation. This exerts a limitation on analysis of the identified anomalies, specifically when trying to isolate causal
factors.

As illustrated in Figure 1, anomalies could result from weather conditions, ATC actions such as deconfliction and
sequencing, aircraft dynamics, or any combination of these factors. For example, weather events can have a significant
impact on airport performance and cause delayed operations if the airport capacity is constrained. Adverse weather
encounters during flight can affect the trajectory and energy state of the aircraft, thereby causing unusual/anomalous
behavior. Identifying the root cause of trajectory anomalies in the air transportation system can be difficult without
accurate weather information, and system-level metrics related to congestion, traffic, etc., especially during adverse
weather event conditions.

Fig. 1 Various types of data that can be used for anomaly detection in terminal airspace operations

Despite numerous implementations of anomaly detection using flight data, there are limited frameworks that enable
using fused data from multiple sources for detecting anomalies. An inherent limitation of such approaches is that the
anomalies are identified only with respect to the aircraft dynamics, trajectory, etc., and do not consider external factors
such as the environmental conditions and/or the state of the system (traffic, congestion, etc.) at the time of operation.
Fig. 1 represents the different contexts that could be considered when detecting anomalies and precursors to anomalies
in trajectories. The fusion of multi-source data is thus necessary to ensure that the underlying uncertainties are captured
and potential causes discovered. Therefore, a framework that explicitly accounts for these factors (weather information,
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system-level metrics related to congestion, traffic, etc.) for the purpose of anomaly detection is proposed. Considering
the previous observations, the following research objective is proposed for this work:

Research Objective: The overarching research objective of this effort is to develop a flexible,
state-of-the-art framework utilizing historical trajectory data fused with weather and traffic metrics to build
an anomaly detection model to identify trajectories that deviate from the norm, given a specific context.

II. Background
Prior to 1995, aviation safety was typically reactive, where after an accident or incident occurs, then a mitigation

strategy was developed and implemented [9]. A reactive approach requires an accident or incident to be experienced,
where, subsequently, the underlying problem is identified and addressed. A reactive approach is unable to keep safety at
adequate levels as air traffic increases and aviation systems are modernized. Thus, the aviation industry realized new
approaches must be developed [9].

In the past 25 years, the industry has made efforts to shift toward proactive and predictive approaches to safety. A
proactive approach to safety involves identifying potential unsafe events before they manifest as accidents or incidents
such that mitigation strategies may be developed to prevent the occurrence of accidents or incidents related to the unsafe
events [10]. Taking safety analysis a step further, a predictive approach to safety involves monitoring data obtained from
routine operations in addition to accidents and incident data and reports to detect potential negative future outcomes. A
reactive approach to safety focuses on prevention of accident or incident recurrence, while proactive and predictive
approaches to safety focus on prevention of accident or incident occurrence. The shift to proactive and predictive safety
is key to maintaining aviation safety in the future as aviation systems modernize and becomes more complex.

To support proactive and predictive approaches to safety, enabling robust anomaly detection is paramount. Anomaly
detection may be defined as the process of detecting rare instances or sets of instances in a data set that may be
of concern due to behaviors or characteristics that differ from the rest of the data set. Aviation anomaly detection
method development has focused on leveraging data-driven, machine learning approaches. There exist supervised,
semi-supervised, and unsupervised machine learning algorithms that may be leveraged for anomaly detection. The key
distinction between supervised and unsupervised machine learning methods is the presence of labels within the data
set. As aviation data is typically unlabeled with respect to anomalies, i.e. there does not typically exist a parameter
in aviation data sets that explicitly indicates whether a data instance is an anomaly or not. Accordingly, the aviation
anomaly detection task is often formulated as an unsupervised anomaly detection problem.

Several unsupervised anomaly detection methods exist with aviation literature. Recently, Basora & Olive published
an up-to-date review on the recent advances in anomaly detection methods applied to aviation data [11]. As there is a
vast array of anomaly detection methods that have been developed, only the most relevant and prevalent will be discussed.
One of the first and most effective anomaly detection methods is multiple kernel anomaly detection (MKAD), developed
by Das et al. [4], which detects anomalies in heterogeneous sequences of both continuous and discrete features. Li et al.
[12] present ClusterAD, a clustering-based anomaly detection method leveraging the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm. Li et al. [5] extend this work to develop a ClusterAD-Flight, which
identities anomalies at the flight level. Additionally, Li et al. [13] present ClusterAD-DataSample, which leverages a
Gaussian Mixture Model (GMM) to detect instantaneous anomalies. Both Das et al. [4] and Li et al. [5, 12, 13] focus
on detecting anomalies provided Flight Operational Quality Assurance (FOQA) data. FOQA data is collected as part of
a structured routine data collection and analysis program, where Flight Data Recorders (FDR) on-board aircraft record
massive amount of data for each flight. The amount of operational data recorded includes anywhere between 80 to
2,000 metrics at a sampling rate of 0.25 to 8 Hz [14]. Access to FOQA data is often very limited to individual airlines
and aviation operators.

As a product of aviation system transformation efforts, new data-generating technologies have been deployed in
aviation systems, which has resulted in more sources, volume, and availability of aviation operational data than ever before
[2]. For instance, Automatic Dependent Surveillance-Broadcast (ADS-B) technology has been deployed to enhance
aviation safety and efficiency by enabling aircraft to determine their position with respect to other similarly-equipped
aircraft, using satellite, inertial, and radio navigation [15]. ADS-B Out periodically emits (at approximately 1 Hz)
the aircraft’s position, along with other relevant parameters, to ground stations and other equipped aircraft [15]. The
expansion of ADS-B technology has enabled open-source flight trajectory data to become publicly available. Detecting
anomalies in aircraft trajectory data, such as that provided by ADS-B technology, has become an active area of research.

To detect anomalies in general aviation trajectory data, Puranik et al. [16] define energy metrics to be computed
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from trajectory data records and utilized for anomaly detection. Puranik & Mavris [7] present a method leveraging
DBSCAN and SVM for detecting anomalies in departing and arriving general aviation flights. Focusing on detection
of anomalies in commercial aviation data, Kim & Hwang [17] and Deshmukh [18] propose TempAD, an algorithm
designed to provide formulas related to the bounds of normality that are easily interpreted in natural languages, where
this method utilizes DBSCAN to identify air traffic flows as a data pre-processing step. As identification of air traffic
flows is a typical pre-processing step when detecting anomalies in trajectory energy-related metrics, Corrado et al. [19]
present a method to more accurately identify air traffic flows using a weighted Euclidean distance function. Jarry et al.
[20] leverage functional principal components analysis (FPCA) and HDBSCAN (Hierarchical DBSCAN) with GLOSH
(Global-Local Outlier Score from Hierarchies) to detect anomalies within the terminal airspace. Finally, Olive & Basora
[21] present an autoencoder-based framework to detect anomalies, or significant operational events, in trajectory data.
However, Olive & Basora consider only true track angle as the feature utilized to indicate an anomalous trajectory [21].
Corrado et al. [22] recently presented a distinction between anomalies identified in the spatial and energy dimensions
of ADS-B trajectory data and associated derived metrics, where both HDBSCAN and DBSCAN were leveraged to
perform the anomaly detection. Further, a primary gap is identified in that none of the aforementioned methods have
leveraged additional data sources in the anomaly detection stage. Rather, additional data has been considered only after
the fact, to aid in validation.

III. Method
The central idea of this framework is to use historical trajectory data fused with weather and traffic data to build an

anomaly detection model to identify trajectories that deviate from the norm, given a specific context. In the proposed
work, the definition of a trajectory anomaly is adapted using the definition of anomalies from Chandola et al. [23] as “a
significant deviation from the norm for a particular flight with respect to its trajectory parameters such as altitude, speed,
descent/climb rate, and flight track (latitude and longitude)”. The parameters that define the trajectory in this context are
closely tied to the kinematic energy state of the aircraft (kinetic, potential, total mechanical energy) and are thus closely
related to energy-based safety metrics defined in our previous work [16].

While there are multiple options for anomaly detection algorithms, deep learning methods are particularly suited for
learning complex relationships from large amounts of raw data without the need for manually designing features. In
doing so, they circumvent the significant amount of domain expertise and time needed to handcraft features. They have
also shown to address the over-fitting and lack of generalizability common to traditional machine learning techniques
[24]. In particular, autoencoders are a category of neural networks capable of learning non-linear reduction functions
as well as their inverse functions to transform data into a low dimensional space (called encoded or latent space) and
back into the original representation. The reconstruction error from the autoencoder is used as a method of identifying
trajectory anomalies in the proposed framework. A discussion on the application of autoencoders for anomaly detection
is presented below. The overall framework proposed in this work is shown in Figure 2. Each block of the proposed
framework is discussed in greater detail below.

Fig. 2 Overall anomaly detection framework
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A. Data Sources
Considering the overarching research objective of this effort, multiple data sources are required to build an anomaly

detection model to identify trajectories that deviate from the norm, given a specific context. Specifically, these data
sources may include trajectory data, such as that provided by ADS-B technology or FOQA data, as introduced, weather
data, and traffic data, which includes information related to congestion and delays within the airspace system.

It is noted here that the design of the anomaly detection framework is meant to provide flexibility to include other
data sources as required/possible. Additionally, the design of the anomaly detection framework is meant to be versatile
related to the fidelity of the data, i.e. high quality trajectory data such as FOQA data may be included in the data sources
in this framework, or lower-quality ADS-B data may be sufficient, dependent upon the application. Similarly, weather
data sources are of vary accuracy and frequency. Furthermore, it is possible that multiple sources for one type of data
may be used and fused according to their relative errors to provide a more accurate measurement. Regardless of the
specific source or fidelity of data leveraged, data from a specific geographic location of interest over a period of several
months from multiple airlines is necessary to demonstrate the value of this framework. This may translate into over a
hundred thousand flights, weather readings, and traffic/congestion data during that time period.

B. Data Fusion
Prior to fusing all selected data sources, the extracted data from each source must be cleaned in such a way that

enables easy fusion. Thus, the data fusion block includes any necessary data extraction, cleaning, fusion, processing,
and augmentation required to generate a fused feature vector for each flight to be input into the machine learning model.
Data fusion in this context is generally time-based, such that weather and traffic metrics are associated to a trajectory
based on aligning and interpolating metric measurements at various times. In the case that multiple data sources are
available to provide the same information, these data sources may be fused according to their relative errors leveraging
techniques such as Kalman filtering [25].

C. Model Development
As introduced, deep learning methods are well-suited for anomaly detection, particularly the use of autoencoders for

unsupervised anomaly detection. Thus, this framework proposes the development of an autoencoder model for anomaly
detection provided the generated feature vectors. As mentioned in Section II, autoencoders have previously been utilized
within the aviation literature to detect anomalies. However, these methods have not made use of additional data sources.
This section first provides a detailed explanation of the concept of autoencoders. Then, an overview of utilization of
autoencoders for anomaly detection within the aviation literature is presented.

1. Autoencoder Models
An autoencoder is an unsupervised deep learning algorithm defined as “the combination of an encoder function,

which converts the input data into a different representation, and a decoder function, which converts the new representation
back into the original format” [26]. Autoencoders reduce dimensionality by setting the number of extracted features to
be less than the number of inputs, and they are usually trained by backpropagation in an unsupervised manner. The
underlying optimization problem aims to minimize the distance between the reconstructed results and the original inputs,
i.e. the reconstruction error. Depending on the volume and complexity of the data set considered, autoencoders’ layers
may be stacked (multiple hidden layers) in an attempt to better capture the structure of the underlying trajectories. The
autoencoder’s architectural complexity in terms of the number of layers and the number of nodes in each layer influences
the models fitting performance through the complexity of features defined in the encoding/decoding layers. An increase
in the layers and nodes results in more sophisticated features embedded in the encoder and decoder. This is apparent
when observing the sharp rise in the number of independent parameters when increasing the model complexity.

A sample of an autoencoder model architecture in the context of the proposed framework is presented in Figure 3.
As per the objective of this work, weather data, traffic data, and trajectory data are combined to produce feature vectors
which are inputs into the autoencoder model, i.e. the input layer. Then, hidden layers are added (which include the
latent space layer) in a symmetric fashion around the latent space layer to finally build out to the output layer, which are
the resulting reconstructed trajectories. The layers to the left, between the input layer and the latent space layer, perform
the task of encoding the input data. The layers to the right, between the latent space layer and the output layer, perform
the task of decoding the latent space layer to produce a reconstruction of the input data. It is noted that before inputting
the data into the autoencoder model, feature vectors are often scaled using scaling techniques such as z-normalization or
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min-max scaling. Normalization is standard when applying machine learning algorithms to reduce bias towards features
with large magnitudes during the training process.

Fig. 3 Notional autoencoder architecture

The key to leveraging autoencoders for anomaly detection lies in assessment of the reconstruction error, which is
computed with respect to some defined loss function, such as the mean squared error (MSE). As depicted in Figure 3, it
is typical within autoencoder anomaly detection literature to take the reconstruction error as an anomaly score. It is
assumed that anomalies are rare events, making up only a very small portion of the data set. If the autoencoder is not
overfit, then the autoencoder should learn the intrinsic structure of the nominal data set, as it makes up the majority of
the data set. On the other hand, the rare behavior of the anomalies should not be learned. Therefore, the model should
more successfully reconstruct nominal trajectories as opposed to the anomalous trajectories. It is possible to take the
trajectories with reconstruction errors, or anomaly scores, above a certain threshold as the detected anomalies. This
threshold may be derived from desired percentiles or a set value.

2. Autoencoders for Anomaly Detection in the Aviation Literature
In recent years, there have been a few studies utilizing autoencoders for anomaly detection in trajectory data,

specifically utilizing OpenSky Network data. Olive et al. [27] present a framework to analyze flight trajectories, detect
unusual behavior, and infer ATC actions. This work analyzes only en-route trajectory data between city-pairs [27].
Further, only the true track angle, or heading, feature is utilized as input into the autoencoder model [27]. When an
anomaly is detected utilizing this approach, there is an attempt to place the anomaly in context to infer whether the
anomaly would correspond to an ATC action [27]. Olive & Basora [28] expand on this work to attempt to identify
operationally significant events which can be associated with ATC actions in all en-route traffic within the LFBBPT
sector in the French Bordeaux Area Control Center. Again, only the true track angle feature is utilized as input to
the autoencoder [28]. Most recently, Olive & Basora [29] again expand this work to present an autoencoder-based
framework to detect anomalies, or significant operational events, in trajectory data including city-pair, en-route, and
terminal airspace trajectory data. However, Olive & Basora, again, consider only true track angle as the feature utilized
to indicate an anomalous trajectory [29], where this is an identified limitation of the previously-mentioned methods.
Thus, a primary gap consistent with that which motivated development of the proposed framework is that none of the
aforementioned methods have leveraged additional data sources in the anomaly detection stage. Rather, additional data
has been considered only after the fact, to aid in validation. Thus, the model development is tailored to address this gap
through inclusion of additional features.

D. Post-Processing and Visualization
The final block of the proposed framework involves post-processing and visualizing results obtained from the model.

Raw model results are not especially useful to operators nor decision-makers. Thus, these results must be presented in
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such a way that actionable insights may be obtained. Further, visualization of model results may additionally serve as a
method of qualitative final model validation. For instance, it is important to visualize flight trajectories both individually
and in the context of the entire data set, especially those trajectories which may have been detected as being anomalous.
Specific visualizations required are use-case dependent.

IV. Implementation and Results
An implementation of the framework introduced in Section III is presented. The San Franscisco International

Airport (KSFO) terminal airspace was selected to perform the implementation. Specifically, flights arriving at KSFO
from January 1BC , 2019 through June 30Cℎ, 2019 were considered. Thus, trajectory, weather, and traffic data were
extracted for flights arriving at KSFO during this time period. The data sources leveraged for implementation of the
proposed methodology are discussed. Subsequently, a discussion on the data fusion framework block is presented,
followed by a discussion on the model development. Finally, the post-processing and visualization of the raw model
results are discussed and presented.

A. Data Sources
Three primary data sources are considered in this effort: (1) OpenSky Network data (trajectory data), (2) Aviation

System Performance Metrics (ASPM) data (traffic data), and (3)Automated Surface Observing System (ASOS) data
(weather data). A brief introduction to each is presented.

1. OpenSky Network

To identify trajectory anomalies using energy-based metrics, a source of ADS-B based aircraft position, velocity,
and status data is required. The OpenSky Network [30] is a non-profit association that processes and archives ADS-B
data from a global network of sensors. OpenSky data has previously been used by researchers for a diverse range of
studies. The traffic library, enables downloading OpenSky Network historical ADS-B trajectory data, where each
data record is referred to as a state vector. State vectors contain timestamps (added on the receiver side, with many
receivers equipped with a GPS nanosecond precision clock), transponder unique 24-bit identifiers (icao24), space-filled
8 character callsigns, latitude, longitude (in degrees), (barometric) altitude (in feet, w.r.t. standard atmosphere), GPS
altitude (in feet), ground speeds (in knots), true track angle (in degrees), vertical speed (in knots). Table 1 provides an
example of the structure and contents of two state vectors obtained from the OpenSky Network for an aircraft.

epoch time icao24 callsign heading baroaltitude lat lon ...
1546300800 1 3 48.628 70.52 53.6326 9.992 ...
1546300801 1 3 49.161 268.66 53.6392 10.004 ...
1546300802 1 3 50.240 457.43 53.6459 10.018 ...

Table 1 Example structure and contents of data obtained from the OpenSky Network historical database

A decent ADS-B receiver antenna can receive messages from cruising aircraft located up to 250 miles away. The
range is typically lower for aircraft flying at lower altitudes. The trajectory data available from the OpenSky Network
can be leveraged to evaluate energy-based metrics mentioned earlier using the aircraft’s position, velocity, altitude, etc.
The OpenSky Network has good coverage over Europe and North America and any airport under the coverage can be
selected for analysis.

2. Aviation System Performance Metrics (ASPM)

The ASPM database∗ is one of the FAA’s four core databases that are utilized to produce the operational metrics
that are tracked and reported to manage FAA efficiency. The ASPM database derives its metrics utilizing information
from the Traffic Flow Management System (TFMS). TFMS is used by air traffic management personnel to plan and
execute traffic flow management initiatives to ensure that constrained areas in the National Airspace System remain
safe and operate optimally. TFMS is comprised of two message streams: TFMS Flight and TFMS Flow. The TFMS
Flight message stream provides initial flight plan messages, amended flight plan messages, departure and arrival time

∗Source: https://aspm.faa.gov/
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notifications, flight cancellation messages, boundary-crossing messages, and track position reports. The TFMS Flow
message stream, on the other hand, provides data on traffic flow management initiatives such as Ground Stops, Reroutes,
Airspace Flow Programs etc. Metrics such as airport arrival and departure rates, delay rates for various categories of
delays, and on-time percentages are available from the ASPM database on an hourly basis. Extracting these metrics
from the ASPM database enables system-level traffic information to be provided as context to the anomaly detection
algorithm. A typical example of processed ASPM data is shown in Table 2. This data can provide further insights into
trajectory anomalies that might not otherwise be available.

hour date scheduled departures % on-time departures ...
0 01/01/2019 4 75 ...
1 01/01/2019 1 100 ...
2 01/01/2019 6 85 ...
Table 2 Example structure of data obtained from ASPM database

3. Automated Surface Observing System (ASOS)
The ASOS program is a joint effort of the National Weather Service (NWS), the FAA, and the Department of Defense

(DoD). ASOS units are automated sensor suites that are designed to serve meteorological and aviation observing needs
and are widely used by meteorologists, climatologists, hydrologists, and aviation weather experts. The ASOS systems
serve as the nation’s primary surface weather observing network. ASOS works non-stop, updating observations every
minute, 24 hours a day, every day of the year. A basic strength of ASOS is that critical aviation weather parameters are
measured where they are needed most: airport runway touchdown zone(s). There are currently more than 900 ASOS
sites in the United States†. For this work, the Iowa Environmental Mesonet‡ is used to obtain ASOS data. An example
of the historical ASOS data available from the Iowa Environmental Mesonet is shown in Table 3.

time tmpf dwpf relh ...
01/01/2019 00:56 54.0 30.9 41.11 ...
01/01/2019 01:05 54.0 32.0 42.98 ...
01/01/2019 01:09 54.0 31.5 43.00 ...

Table 3 Example structure data obtained from the IEM database

B. Data Fusion
As mentioned, the data fusion block of the framework includes the data extraction, cleaning, fusion, processing, and

augmentation required to generate a fused feature vector or each trajectory. The data extraction, cleaning and fusion
procedure contained three primary steps: (1) Initial Cleaning, (2) Segment Identification, and (3) Final Cleaning. The
data fusion steps are presented in Figure 4. The OpenSky Network trajectory data was first extracted and was initially
cleaned in the first step of the data extraction, cleaning, and fusion procedure. Then, using only the OpenSky Network
data, flight segment identification occurred. Next, the ASOS weather data was fused and leveraged in the final cleaning
step, after which the ASPM traffic data was fused. It is noted that, in this implementation, the trajectory data metrics
are time series data, while the weather and traffic data metrics are metadata, meaning a single value for each metric is
associated with the entire trajectory, i.e. a trajectory may have = time series data points for each metric, yet only one
data point for each weather and traffic data metric. Each of the data extraction, cleaning, and fusion steps are discussed
in more detail below as well as the data processing and data augmentation steps.

†Source: https://www.weather.gov/asos/asostech
‡Source: https://mesonet.agron.iastate.edu/request/download.phtml?network=CA_ASOS
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Fig. 4 Data fusion procedure

1. Initial Cleaning
OpenSky Network state vectors are extracted from OpenSky Network’s historical database leveraging the traffic

[31] Python library. The raw extracted state vectors from the OpenSky Network require a few steps to initially clean the
data. These steps proceed as:

1) Remove state vectors with redundant values for latitude, longitude, barometric altitude, ground speed, and
heading measurements.

2) Remove state vectors with empty values or latitude, longitude, barometric altitude, ground speed, and heading
measurements.

3) Remove state vectors not corresponding to a commercial flight operation, determined by parsing the callsign
associated with the state vector.

2. Segment Identification
Next, trajectory segment identification occurred. The state vectors were split by callsign, and then further split into

individual trajectory segments where the time difference between two successive state vectors was greater than five
minutes. Five minutes was set as the threshold for which to separate trajectory segments due to the loss of information
that would result from five minutes between trajectory measurements within the terminal airspace. Further, it is possible
that multiple flights operate with the same callsign in one day, and splitting by a large time difference enables both of
these segments to be captured. A unique identifier was assigned to each of the identified trajectory segments. The
trajectory segments were then characterized as arrival or departure segments based on the medians of the first and last
five altitude measurements. If the first altitude median was greater than the last altitude median, then the trajectory
segment was characterized as an arrival. Otherwise, the trajectory segment was characterized as a departure and
disregarded for the purpose of this work. The median of the first five altitude measures was taken to be robust to any
noise or erroneous measurements that occur.

Then, the touchdown point state vector was identified. The touchdown point was identified as the first state vector
where the ground speed reaches below 100 knots, or the last point if no point was recorded to reach below 100 knots.
It is noted that this is an approximate method for identifying the touchdown point and can lead to some error, but is
observed to be the most robust for this data set.
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Fig. 5 Top five most common airlines and aircraft types

Before final data cleaning steps, the ASOS data was fused with the OpenSky Network data, which first required
some cleaning of the raw extracted ASOS data. The raw extracted ASOS data from the Iowa Environmental Mesonet
required filling missing values in the columns ‘tpmf’, ‘dwpf’, ‘relh’, ‘drct’, ‘sknt’, ‘p01i’, ‘alti’, ‘mslp’ and ‘gust’ by
performing nearest-neighbor interpolation. The ASOS data was associated with each flight segment based on the
touchdown vector’s timestamp.

3. Final Cleaning
Finally, the final cleaning of data proceeded. The lowest trajectory segment altitude reached was determined by

assessing the mean sea level pressure from the ASOS data and computing a corrected airport altitude for the touchdown
point state vector. The trajectory segment was discarded if the difference between the touchdown altitude and the airport
altitude was greater than 100 ft (i.e. the trajectory segment did not reach within 100 ft above ground level). These
segments were discarded because enough data does not exist to consider the approach to be complete. The touchdown
altitude was then utilized to compute a Height Above Ground Level (HAGL) for each state vector by subtracting the
touchdown altitude from all other altitude measurements. Finally, the hourly ASPM data was fused with each trajectory
segment based upon the hour of the touchdown state vector’s timestamp. The raw ASPM data did not require extensive
data cleaning efforts.

The resulting set of ADS-B trajectory data for flights operating within the KSFO terminal airspace from January 1BC ,
2019 through June 30Cℎ, 2019 contains 81,776 total arrival trajectory segments. The data set contains both domestic
and international flights on 135 airlines, where approximately one-fourth of the flights are operated by United Airlines.
Further, the data set contains 88 unique aircraft types, where the most commonly operated are E75L aircraft, closely
followed by A320 aircraft and B737-900 aircraft. A distribution of the top five most common airlines and aircraft types
for the 81,776 flights in this data set is displayed in Figure 5.

4. Data Processing
Anomaly detection is typically performed considering a data set that has been cut off at some distance- or time-based

threshold, i.e. 15 nautical miles cumulative ground track distance from the touchdown point or the final 10 minutes of
flight. In this work, a 15 nautical mile distance-based cutoff was selected to mitigate the effects of potentially differing
approach speeds for different aircraft type. Any trajectory points outside of this 15 nautical mile cumulative ground
track distance threshold were discarded. However, this results in trajectory records of varying lengths between the
different trajectories.

Anomaly detection methods typically operate on trajectory records of a standardized n-dimensional length. Therefore,
a re-sampling of the time series trajectory data to form n-dimensional trajectory records was necessary. There exist two
primary re-sampling methods: distance-based and time-based. In the case where aircraft maintain a relatively constant
velocity, distance-based and time-based re-sampling methods generate a nearly identical set of points. However, within
the terminal airspace, aircraft velocity is rarely constant for extended periods of time, particularly during the approach
phase where it gradually decreases. A time-based re-sampling would result in an uneven balance of points closer to
the airport. Therefore, a distance-based re-sampling method is selected. A uniform re-sampling occurs based on the
cumulative ground track distance of an aircraft from its touchdown point. This results in the re-sampled points being
spatially more evenly distributed. Therefore, the data set was re-sampled to provide 50 evenly-spaced points between 15
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nautical miles cumulative ground track distance from the touchdown point and the touchdown point. This resulted in a
resolution of about 0.3 nautical miles cumulative ground track distance between trajectory points within a trajectory
segment.

5. Data Augmentation
To support anomaly detection in the energy dimension of the trajectories, the time series trajectory data was

augmented with derived energy metrics. Energy metrics were computed that indicate the energy state of the aircraft at
each trajectory point. The energy metrics computed to augment the data set include:

• Specific Potential Energy: (%� = ℎ, where ℎ is the HAGL.
• Specific Kinetic Energy: ( � = + 2

26 , where + is the ground speed and 6 is the gravity constant.
• Specific Total Energy: ()� = (%� + ( � , where ()� is the sum of the specific potential and specific kinetic
energies.

• Specific Potential Energy Rate: (%�' = (%�8+1−(%�8

ΔC
, where ΔC is the time difference between two consecutive

records, 8 + 1 and 8.
• Specific Kinetic Energy Rate: ( �' = ( �8+1−( �8

ΔC
.

• Specific Total Energy Rate: ()�' = () �8+1−() �8

ΔC
.

The data fusion steps produce a data set containing time series metrics as well as metadata metrics. The time series
metrics of interest included the latitude, longitude, ground speed, heading, vertical rate, and HAGL as well as the
derived energy metrics. The metadata metrics of interest included those associated with the ASOS data set such as
temperature, dew point temperature, relatively humidity, wind direction, wind speed, and one-hour precipitation and
also those associated with the ASPM data set such as number of departures, number of arrivals, percent of on time
gate departures, percent of on time airport departures, percent of on time gate arrivals, average gate departure delay,
average taxi-out time, average taxi-out delay, average airport departure delay, average airborne delay, average taxi-in
delay, average block delay, and average gate arrival delay.

To generate a feature vector for each trajectory, the metadata features were aligned in a row and the time series
features were stacked and aligned in the same row. The feature vectors for each trajectory were then aggregated to
produce the final feature vector matrix. An example of the structure of the feature vector matrix is displayed in Table 4.
Overall, there are 23 metadata columns and 550 times series data columns (11 time series features, re-sampled to 50
points each), resulting in 573 total columns within the feature vector matrix.

unique_id tmpf ... #_dep ... lat_0 ... lat_49 ...
KSFO_arr_0 56 ... 456 ... 36.6231 ... 36.8426 ...

... ... ... ... ... ... ... ... ...
KSFO_arr_81776 64 ... 562 ... 36.6232 ... 36.5426 ...

Table 4 Example structure of the feature vector matrix

C. Model Development
To build the autoencoder model, the tensorflow [32] Python library was leveraged. As mentioned, the architecture of

the autoencoder is determined by the number of layers and the size of the layers (number of nodes within the layer).
Additional hyperparameters are available as input to the autoencoder model within the tensorflow library, such as number
of training epochs (4?>2ℎB) and batch size (10C2ℎ_B8I4), which is the number of training examples per gradient update.
Further, the autoencoder model is trained such that a loss function is minimized.

The autoencoder model architecture implemented included the following layers of the following sizes: (0) input
layer of 573 nodes, (1) hidden layer of 500 nodes, (2) latent space layer of 10 nodes, (3) hidden layer of 500 nodes, and
(4) output layer of 573 nodes. The tensorflow [32] Python library was leveraged to build the autoencoder model. The
autoencoder model was trained for 50 epochs with a batch size of 150. Due to the uniqueness of the data set in that it
contains both metadata and time series data features, the selection of a loss function is challenging. It is often desirable
to weight all features equally when computing the loss, or reconstruction error so as to not bias results towards one
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feature. However, due to the presence of both metadata and time series data features, all features will not be weighted
equally utilizing a standard loss function such as MSE. This is because the time series data features essentially hold
about 50 times more weight, i.e. an anomaly in the velocity dimension would result in at least one, yet likely more,
points within the velocity columns having abnormal values, which would increase the MSE significantly for however
many points are abnormal, whereas an anomaly in a weather dimension would only contain one abnormal value and
would not be capable of significantly impacting the MSE when compared to the anomaly in the velocity dimension.
Consequently, a standard loss function such as the MSE is not appropriate for this application.

Therefore, a custom loss function is proposed that is a modified MSE function. In this custom function, the MSE of
the individual points of time series data features are averaged for each of the time series data features’ dimensions before
contributing to the MSE as a whole. Figure 6 displays the intuition behind the modified MSE custom loss function that
reduces bias toward time series data.

Fig. 6 Custom loss function illustrated

Before inputting the data into the autoencodermodel, the feature vectorswere normalized utilizing the Z-normalization
technique the StandardScaler module from the sklearn [33] Python package. Z-normalization re-scales the data within
each column to have zero mean and unit standard deviation: / = G−`

f
, where / is the re-scaled values, ` is the mean,

and f is the standard deviation.
Assessing and validating an autoencoder model is very challenging without the presence of labels indicating whether

a trajectory is an anomaly or not. For this application, no such labels exist for the extracted OpenSky Network trajectory
data, nor the ASOS or ASPM data. Therefore, it is often by manual inspection of the identified anomalies and nominal
data that judgements are made regarding the performance and validity of a model. Manually assessing each trajectory is
not feasible considering the number of trajectories within the data set. Therefore, to perform some validation, it is ideal
to be able to assess quantitative metrics that provide insight into the performance of the model. However, deriving
quantitative metrics is difficult without a-priori knowledge of the labels of trajectories.

To address this issue, generation of artificial anomalies is proposed as a solution to insert trajectories with labels
into the data set. The objective in generating artificial anomalies is to provide the autoencoder with trajectories that
were known to be anomalous to assess its capability in detecting these trajectories as anomalous. Two primary types of
artificial anomalies were generated:

1) Extreme Artificial Anomalies (ExAA): These were trajectories with nominal latitude and longitude coordinates,
yet all other metrics had the potential to be varied to extreme values. Extreme values in this case are either
the maximum/minimum values (0% higher/lower than the maximum/minimum values), 5% higher/lower than
the maximum/minimum values, and 10% higher/lower than the maximum/minimum values of each metric. A
sample ExAA trajectory with the nominal latitude and longitude values was then populated with extreme values
for all other metrics, where different combinations of metrics being high extreme or low extreme were created.
For each of the extreme value settings (0%, 5%, and 10%), 130 ExAA were generated, for a total of 390 ExAA.
The ExAA simulated entire trajectories that were anomalous.

2) Subsequence Artificial Anomalies (SubAA): These were trajectories selected at random, where a subsequence
of these trajectories’ time series metrics was then also selected at random, and the values of all time series
metrics were perturbed to be significantly greater with random noise than the current values. The perturbed
values were generally always much higher than the normal range for that time series metric. The metadata
metrics were left unvaried in this case. There were 300 SubAA generated in total. The SubAA simulated only
portions of entire trajectories that were anomalous, and may be considered more instantaneous anomalies.

A total of 690 artificial anomalies were generated, making up about 0.8% of the total data set. Plots of the energy
profiles of the two types of artificial anomalies are displayed in Figure 7 and Figure 8. The lighter green area in the
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Figure 7 and Figure 8 represents the range of the 5th to 95th quantiles, while the darker shade of green represents
the 25th to 75th percentiles. It is evident these artificially anomalous trajectories are significantly different from the
trajectories that exist in the real data set. Thus, the autoencoder should be able to detect dissimilarities between these
and real, nominal data. It is assumed that a robust anomaly detection model will make a significant distinction between
the artificial anomalies and real data.

Fig. 7 ExAA examples

D. Post-Processing and Visualization
Anomalies are detected leveraging the anomaly score, or reconstruction error, from the autoencoder. It should follow

that the autoencoder is able to reconstruct nominal trajectories well, while abnormal, or anomalous trajectories are
poorly reconstructed. A poor reconstruction, thus, results in a higher reconstruction error, or anomaly score. Therefore,
the histogram of anomaly scores is considered such that a specified threshold may be set above which the flight segments
may be considered to be anomalous. The 99Cℎ percentile of the reconstruction errors was selected as the threshold
above which trajectories were considered to be anomalous.

Implementation of the previously described autoencoder resulted in 72% of the artificial anomalies being above the
99Cℎ percentile value, and therefore classified as anomalies. Further, the distribution of the log of the reconstruction
errors (anomaly scores) separated by real data and type of artificial anomaly is displayed in Figure 9. It is evident that
the distributions of anomaly scores between both types of artificial anomalies and the real data are clearly dissimilar.
The ExAA anomalies appear to be generally “more severe” than the SubAA anomalies, which is consistent with their
development, as the ExAA anomalies are dissimilar for the entire trajectory length as well as metadata metrics.

Additionally, it is investigated if there is a clear distinction between the artificial anomalies and real data in the latent
space layer. Utilizing the t-distributed stochastic neighbor embedding (t-SNE) [34] dimensionality reduction technique
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Fig. 8 SubAA example

Fig. 9 Model reconstruction error distributions separated by label

to reduce the dimension of the latent space and visualize the latent space, it is clear there is a distinction. The t-SNE
dimensionality reduction technique is a non-linear dimensionality reduction techinique, which models the probability
distribution of neighbors around each points, where the term neighbors refers to the set of points closest to each point.
In the original, high-dimensional space this is modeled as a Gaussian distribution, while in the low-dimensional output
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space this is modeled as a t-distribution. The reduced-dimension plot is displayed in Figure 10. Both the ExAA and
SubAA lie on the outskirts of the reduced-dimensional space.

Fig. 10 Model reduced-dimensional plot

Fig. 11 Top anomalies identified

To perform some manual validation on this model, two of the real trajectories with the highest anomaly scores are
examined. Figure 11 presents the energy profiles of these two trajectories. It is evident there is abnormal behavior as
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these trajectories, at times, are beyond the normal ranges of energy metrics. For instance, Anomaly 1 has a very low
SKE profile. Anomaly 2 also has a relatively low SKE profile, as well as SPE profile.

The above visualizations developed and discussed enabled an initial validation of the proposed framework to be
performed. It is evident that abnormal flights are able to be detected, specifically, as demonstrated in Figure 11, in the
energy dimensions. Considering the approach phase, proper energy management is paramount to the safe and efficient
arrivals of aircraft.

V. Conclusions and Future Work
This paper presented a novel framework based on deep learning methods, specifically autoencoders, to detect

anomalies in terminal airspace operations. In development and implementation of this framework on six months of data
for aircraft arriving at KSFO, several key accomplishments related to anomaly detection using fused trajectory data
were observed. An extensive data processing pipeline that involved the fusion of data from multiple sources to include
information about not only the trajectory of each aircraft, but also the prevailing weather and traffic congestion metrics
at an airport was developed and implemented. Artificial anomalies were generated to aid in model validation efforts.
Finally, the implementation of an architected deep autoencoder model demonstrated success based on initial validation
studies.

It is noted that no hyperparameter optimization was performed in this initial demonstration implementation of the
proposed framework. Therefore, future work includes the exploration of hyperparameter optimization to enable selection
of the most robust anomaly detection model. Further, the application of this framework to a data set of departing flights
is necessary. Based on the initial validation of results presented in Section IV, it is evident the proposed framework
shows promise in detection of anomalies in historical trajectory data fused with weather and traffic metrics. In the future,
the developed framework has the potential to aid air traffic controllers in identifying high risk situations from a holistic
perspective and applying appropriate mitigation strategies.
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