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ABSTRACT 

The electrical and mechanical failures (such as bearing 
and winding failures) combine to cause premature 
failures of the generators, which become a flight safety 
issue forcing the crew to land as soon as practical. 
Currently, diagnostic / prognostic technologies are not 
implemented for aircraft generators where repairs are 
time consuming and its costs are high.  This paper 
presents the development of several algorithms to 
differentiate between these failure modes and normal 
aircraft operational modes, determine the degree of 
damage and remaining life of a generator.  P-3 generator 
data (vibrations & phase voltages/currents) were 
collected for a seeded bearing failure involving 
lubrication defects in main bearing system.  The results 
show that the frequency domain analysis of the 
generator’s phase voltage can be used to detect its 
general health and impending bearing failures. 

INTRODUCTION 

The P-3 Navy aircraft uses a Bendix (later AlliedSignal 
and currently Honeywell) generator that was designed 
over 30 years ago. The P-3 generator is a salient 8-pole 
(8 rotor bars), 6,000-rpm, 3-phase brushless ac 
generator. The running speed of the generator is 5700 
rpm to 6,300 rpm (line frequency of 380 Hz to 420 Hz). 
The rated voltage and power is 115 VAC and 60 kVA (20 
kVA/phase), respectively. It has a 12-pole ac exciter and 
a three-phase, half-wave diode rectifier rotating with the 
exciter armature and main generator field assembly. A 
single-phase permanent magnet generator (PMG) 
furnishes control voltage and power for the voltage 
regulator. 

The electrical and mechanical issues (due to 
continuously operated beyond design point and less than 
optimal drive end bearing support) combine to cause 
premature failures of the P-3 generators, which become 
a flight safety issue forcing the crew to land as soon as 
practical. In case of a catastrophic failure, besides 
loosing a costly asset, components flying out of the 
generator sometime damage the airframe and 

surrounding equipment. Repairs are time consuming and 
its costs are high. Currently, diagnostic / prognostic 
technologies are not implemented for P-3 generators and 
other electrical power systems. Although some time 
series data (such as phase voltage and current) are 
collected during ground testing, no time series data is 
collected in-flight for the generators. Figure 1 shows the 
disassembled parts of a brushless ac generator for the 
P-3.

Figure 1: Disassembled brushless ac generator 

A data-driven, diagnostic and prognostic architecture 
based upon fuzzy neural networks and Electrical 
Signature Analysis (ESA) approach is proposed in this 
work to detect and identify critical incipient generator 
failure modes and predict the remaining generator life 
under different operating conditions. This will enhance 
the reliability of aircraft generators by providing the crew 
and maintenance personnel with information about the 
current health state and remaining life of generators so 
that timely action can be taken. 

MAIN SECTION 

GENERATOR HEALTH MONITORING ALGORITHMS – 
Figure 2 depicts the basic modules of the proposed 
Diagnostic and health management system architecture 
based upon data-driven algorithms [1][2][3] and also 
shows how the architecture can provide inputs to the 
condition-based maintenance (CBM) module for 
maintenance execution.  The feature extraction unit 
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takes raw sampled data from a generator and converts it 
to a form suitable for the diagnostic and prognostic 
modules. The diagnostician monitors continuously critical 
feature data and decides upon the existence of 
impending or incipient failure conditions. The detection 
and identification of an impending failure triggers the 
prognosticator. The prognosticator reports the remaining 
useful lifetime of the failing machine or component to the 
CBM module. The CBM module schedules the 
maintenance so that uptime is maximized while certain 
constraints are satisfied. The prognostic architecture is 
based on three constructs: 1) a static “virtual sensor” that 
relates known measurements to material deterioration; 
2) a predictor which attempts to project the current state
of the damaged material into the future thus revealing
the time evolution of the damage and allowing the
estimation of the material’s remaining useful lifetime; and
3) a Confidence Prediction Neural Network (CPNN) [4][5]
whose task is to account for uncertainty and 
manage/shrink the prediction bounds. 
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Figure 2: Overall Architecture for Diagnostic and 
Prognostic Assessment of Aircraft Electric Power 
Systems 

Fuzzy Neural Networks – Recently, Fuzzy Neural 
Networks (FNNs) have been used for implementing 
fuzzy logic systems. FNNs combine the low-level 
learning and the computational power of neural networks 
with high-level reasoning and decision making of fuzzy 
systems [6]. The fuzzy neural structure proposed in [6] 
will be considered in this paper. This FNN structure 
consisted of a fuzzy rule base of Takagi-Sugeno fuzzy 
rules with the rule consequents being linear polynomials 
of the input premise variables. Both structure learning 
and parameter learning was used to adaptively develop 
the FNN construct. The structure learning was used to 
insert new membership functions, create new fuzzy rules 
and select initial parameters of the new rules on the 
basis of the desired output data. The parameter learning 
updated the consequent weights and the mean and 
standard deviation of the gaussian membership 
functions via the back propagation algorithm. 

FNN STRUCTURE – The fuzzy neural architecture is 
divided into the premise part, the consequent part and 
the defuzzification part, as shown in Figure 3. The 
premise module partitions the premise space, assigns 

membership functions to each premise cell and develops 
the rule base of fuzzy rules. The consequent module 
consists of the rule consequents being linear polynomials 
of the input premise variables. Finally, the defuzzification 
module combines the firing strengths of the rules and the 
rule output functions to provide the final system output. 
Therefore, this FNN construct realizes the fuzzification, 
fuzzy reasoning, and defuzzification functionalities of a 
connectional fuzzy inference mechanism. 
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Figure 3: General configuration of the FNN 
architecture 

OFFLINE / ONLINE LEARNING ALGORITHM – 
Structure learning inserts a new membership on each 
input axis that is not sufficiently covered by the existing 
memberships. New rules are created for the following 
cases: (1) the input is not covered by an existing rule and 
(2) if at least one new membership is created. A new
fuzzy rule is created by combining the new memberships
and an appropriate set of already existing memberships.
Offline parameter learning updates the consequent
weights via a local least squares estimation technique [7]
using a set of training data. Online parameter learning
updates the consequent weights via Kaczmarz’s
algorithm [7] applied to the current FNN input vector.

Feature Extraction – Initial time-domain and frequency 
domain feature extraction algorithms have been 
developed to distinguish between healthy and common 
failure modes such as bearing failure.  The time domain 
features (kurtosis, root mean square, etc.) are calculated 
from (demodulated) voltage, current and/or vibration 
data. The frequency domain features are based upon 
ESA and power spectrum demodulation.  The vector of 
features provided to the diagnostician and prognosticator 
will be composed of time domain statistics and statistical 
information about power spectral densities (PSDs) 
calculated at rotor, stator and bearing diagnostic 
frequencies. 
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POWER SPECTRUM DEMODULATION – In this work, 
the steps to perform power spectrum demodulation are 
(1) filtering of raw signal, (2) demodulation using Hilbert
Transform based full wave rectification and (3)
calculation of power spectrum via Welch method.  The
goal of this process is to remove the dominant line
frequency component contained in the phase voltage
and current signals so that ripple (composed of
harmonics and fault signatures) along the line frequency
can be analyzed using the envelope of the raw
voltage/current signals. This approach allows a clear
detection of failure frequencies without being swamped
by the power in the line frequency.  The Hilbert transform
can be expressed as follow:

( ) ( )1ˆ
x

x t d
t

τ
τ

π τ
∞

−∞
=

−� (1) 

The Hilbert transform creates an artificial complex signal 
( ) ( ) ( )ˆu t x t jx t= +  from input signal ( )x t . The real part of

the analytical signal is the original signal ( )x t , the
imaginary part ( )x̂ t  represents the Hilbert transform of a
real part, ( )x t . The absolute value magnitude of the
complex analytical signal forms the signal envelope and
demodulates the original signal x(t).  The absolute value
magnitude of u(t) is given by ( ) ( ) ( )2 2ˆu t x t x t= + .

ELECTRICAL SIGNATURE OF GENERATOR 
FAILURES – ESA is the term used for the evaluation of 
the voltage and current waveforms. This provides an 
increased advantage to diagnostics as power-related, 
motor-related and load-related signals can be quickly 
compared. A key consideration when using ESA is that 
voltage signatures relate to the upstream of the circuit 
being tested (towards power generation) and current 
signatures relate to the downstream of the circuit being 
tested (towards the motor and load) as depicted in 
Figure 4.  ESA uses the machine being tested as a 
transducer, allowing the user to evaluate the electrical 
and mechanical condition from the control or switchgear. 
For accurate analysis, ESA systems rely upon FFT 
analysis, much the same as vibration analysis. 

Figure 4: Applying ESA to Motor and Generator 
Systems 

The following is a list of faults that can be detected using 
ESA and what is the corresponding characteristics/ 
patterns of the electrical signatures [8][9][10][11]: 

• Stator Mechanical Faults (loose coils, stator core
movement, etc.): CF = RS x Stator Slots; CF has
line frequency sidebands.

• Stator Shorts (shorted windings): CF = RS x
Stator Slots; CF has line frequency sidebands with
running speed sidebands.

• Rotor Indicator: CF = RS x Rotor Bars; CF has line
frequency sidebands.

• Static Eccentricity: CF = RS x Rotor Bars; CF has
line frequency and twice line frequency sidebands.

• Dynamic Eccentricity: CF = RS x Rotor Bars; CF
has line frequency and twice line frequency
sidebands with running speed sidebands.

• Mechanical Unbalance (and Misalignment): CF =
RS x Rotor Bars; CF has line frequency sidebands,
space of four times line frequency then two line
frequency peaks

• Bearings: CFBPOR = BPOR x RS, CFBPIR = BPIR x
RS, CF2xBSF = 2 x BSF x RS and CFFTF = FTF x RS;
CFBPOR, CFBPIR , CF2xBSF  and CFFTF have line
frequency sidebands. Harmonics of the frequencies
can be found by multiplying each bearing frequency
by integers with line frequency sidebands around
each.

where CF is the center frequency of the fault pattern, RS 
is the running speed of the generator, line frequency (LF) 
is given as LF = [RS x NP]/2, NP is the number of poles, 
BPOR is the ball pass outer race, BPIR is the ball pass 
inner race, 2xBSF is the 2 times the ball spin frequency 
and FTF denotes the fundamental train frequency.  The 
bearing parameters needed to calculate BPOR, BPIR, 
2xBSF and FTF are obtained from a manufacturer’s 
catalog given the particular manufacturer and size of the 
bearing. Equation (2) depicts the frequency calculations 
for bearing failures where the parameters are as follows: 
B is the rolling element diameter, P is the pitch diameter, 
� is the contact angle and N is the number of rolling
elements.
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Fault Classifier – The diagnostician, implemented as a 
multiple-input multiple-output FNN, serves as a nonlinear 
discriminator to classify impending faults. The fault 
classifier is trained to recognize generator faults from a 
vector of features corresponding to rotor, stator and 
bearing failures. 
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Virtual Sensor – The virtual sensor calculates a failure 
measure indirectly through a neural network mapping of 
features and operating condition. It is often true that 
machine or component faults are not directly accessible 
for monitoring their growth behavioral patterns. 
Consider, for example, the case of an electrical 
generator.  No direct measurement of the degree of 
stator / rotor winding degradation, bearings damage, etc. 
occurring in a generator is possible when it is in an 
operational state.  That is, there is no such device as a 
“fault meter” capable of providing direct measurements 
of the fault evolution. A schematic representation of a 
virtual sensor for aircraft generator diagnostic is shown in 
Figure 5.  The fault dimensions take the form of a vector 
of integer state-of-health (SOH) values where the values 
range from 100 (healthy) to 0 (fault) 

  Virtual  
Sensor  

Measurable  
Quantities  

Fault 
Dimensions

•  Interval Processing Features  
 •  Temperature Stats

•  Electrical Signatures

    � 

•  Rotor winding degradation 
•  Rotating diode damage  
•  Degree of bearings damage
• Degree of dielectric
   breakdown

  �  

Figure 5: A schematic representation of the Virtual 
Sensor 

Table 1: Failure modes common to wound field 
generators 

Component Failure 
Modes 

Symptoms 

Main Bearing Wear Increased vibration 

Rotating Diodes Short 
circuited 
diode(s) 

• Increased current
� generator
running hot

• Eventual
insulation failure

• Loss of regula-
tion � generator
tripping offline

Main Rotor 
Field 

Inter-turn 
short circuited 
field  

• Increased
vibration

• Increased field
current

Main Stator Short circuit 
winding(s): 
-- turn-to-turn 

• Intense heat
• Insulation

damage
• Excessive

current flow
Airgap Zone Static and 

dynamic 
eccentricity 

• Increased
vibration

• Insulation
degradation

• Rotor / stator
rubbing

Loss of Cooling 
(Fan or Pump) 

Blockages 
Wear 

Increased stator 
temperatures 

GENERATOR DRIVE-END BEARING FAILURE 
EXAMPLE – A small amount of Silicon Carbide grit was 
added to the lubrication for the “drive end” bearing of a 
P-3c generator to accelerate degradation of the bearing
system while data was collected for a span of ~3,320
seconds until the main bearing died. Triaxial acceleration
vibrations, electrical stator phase currents and voltages
were collected at 100 kHz for the seeded main bearing
failure. Also, the signal from the bearing failure indication
system, which failed to indicate bearing failure, was
recorded throughout the testing. The running speed and
load of the generator was 100 Hz and 60 kVA,
respectively. The vibration data did not indicate bearing
failure via visual inspection alone.  In particular, no large
spikes in vibration data were observed and no significant
change in the power spectral density of original vibration
signals were seen during the experiment.

Comparison of Low-hour and Degraded Generators –
The generator with seeded bearing fault was contrasted 
with NAVAIR provided data collected at 100 kHz for 3 
low-hour P-3 generators (Gen 73-A0255, Gen 1182 and 
Gen 18700071).  The rotor indicator (CFRS x Rotor Bars) and 
key bearing diagnostic frequencies (CFFTF, CFBPOR, 
CFBPIR and CF2xBSF) were determined to be 800 Hz, 
39.95 Hz, 359.58 Hz, 540.42 Hz and 463.18 Hz, 
respectively. These values were calculated using 
Equation (2) and the following parameters: B is 0.375 
inches, P is 1.81 inches, N is 9, � is 14.1° (0.246 
radians), number of rotor bars is 8 and the running speed 
is 100 Hz. 

Figures 6 through 8 show the normalized power 
spectrum of the demodulated voltage signal as a function 
of time and harmonics of key frequencies for 3 low-hour 

FAILURE MODES COMMON TO WOUND FIELD 
GENERATORS – In this section, we define typical failure 
modes for the P-3 generator that are universal to all 
wound field generators regardless of the cooling 
mechanism (Air, Conduction and Oil Spray cooling). 
Presently, when main stator and rotor opened field 
failures occur, they will cause the generator to 
immediately drop offline as protection to the system or 
simply because the generator can not work under the 
failure condition.  Other failure modes that have poor 
diagnostic potential are open circuit rotating diodes and 
phase-to-phase short circuit stator windings. 

Table 1 lists common generator failure conditions that 
are generic to wound field generators and can be 
diagnosed prior to loosing the generator because these 
failures allow the generator to continue operation in a 
degraded condition. These failures are more easily 
diagnosed and can initiate preventive maintenance prior 
to failure. Additionally, reduction in cooling efficiency can 
also be detected utilizing resistive temperature devices. 
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generators and a generator with seeded bearing failure. 
The normalized power spectrum was calculated as PSD 
values minus the average PSD where any value below 
the threshold has a normalized power spectral density of 
zero. The key frequencies shown are harmonics of rotor 
indicator (CFRS x Rotor Bars) and two bearing diagnostic 
frequencies (CFFTF and CFBPOR). Two of the low-hour 
generator depicted in Figure 8 consistent behavior until 
about 24 kHz while ‘Gen 1182’ showed significant 
change around 11.4 kHz. Unlike the low-hour 
generators, the generator with seeded bearing fault has 
large drops in PSDs in the range of 3.2 kHz and 50 kHz 
from expected values. Likewise, Figures 7 and 8 show 
that bearing frequencies showed more consistency in 
PSD values for low-hour generators than the generator 
with seeded fault.   
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Figure 6: Normalized power spectrum of generators 
for harmonic frequencies of CFRS x Rotor Bars (800 Hz) 
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Figure 7: Normalized power spectrum of generators 
for harmonic frequencies of CFFTF (39.95 Hz) 
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Figure 8: Normalized power spectrum of generators 
for harmonic frequencies of CFBPOR (359.58 Hz) 

Diagnostic Features – Figure 9 shows 1D view of the 
range in PSDs values for rotor indicator diagnostic 
frequencies for the 4 generators.  It is clearly seen that 
the low-hour generators have less range than the 
generator with seeded fault.  Also, the range in PSDs for 
each multiple of CFRS x Rotor Bars increases as a function of 
harmonic order.  This behavior is similarly observed for 
harmonics of the four key bearing frequencies.  Figure 
10 shows the range in PSDs for harmonics of CFBPOR.  
Therefore, the following three general features were 
selected to detect bearing failures: 

• PSDmax diff = [PSDmax – PSDmin] per diagnostic
frequency

• PSDstd dev per diagnostic frequency
• PSDmax (or Peak PSD) per diagnostic frequency.
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Figure 9: Range of PSD values for rotor indicator 
diagnostic frequencies 
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Figure 10: Range of PSD values for CFBPOR 
diagnostic frequencies 

Results – Figures 11 and 12 show that the PSDmax diff per 
rotor and BPOR diagnostic frequencies is an excellent 
feature in distinguishing between low-hour and degraded 
generators.  Both figures show significant changes in 
values of PSDmax diff for the seeded fault generator at 300 
seconds and 780 seconds into experiment which are well 
before the bearing system died. This feature was also 
able to detect that the rotor health was different from low-
hour generators as early as 20 seconds into the 
experiment. 
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Figure 11: PSDmax diff as a function of time and 
harmonics of CFRS x Rotor Bars 
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Figure 12: PSDmax diff as a function of time and 
harmonics of CFBPOR 

Figures 13 and 14 show how the accumulation of PSDmax 

diff w.r.t. frequency evolves over time for the rotor and 
bearing diagnostic frequency during the seeded bearing 
fault experiment. The accumulated PSDmax diff metric for 
rotor diagnostic frequencies was above the threshold 
established from low-hour generators at 20 seconds and 
showed two significant changes in health of the 
generator: (1) 240 � 340 seconds and (2) 760 � 860 
seconds. Note that the accumulated PSDmax diff metric 
had little no change after 1820 seconds into the 
experiment. In the case of bearing diagnostic 
frequencies, the seeded fault generator exceeded the 
thresholds at 300 seconds into the experiment and 
exhibited a logarithm-like growth after 780 seconds until 
the end of the experiment. Therefore, the accumulated 
PSDmax diff metric can be used an indicator of the 
generator’s health and the degree of damage when 
encountering bearing failures. 
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Figure 13: Accumulated PSDmax diff for harmonics of 
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Figure 14: Accumulated PSDmax diff for harmonics of 
bearing diagnostic frequencies 

CONCLUSION 

Common generator failure conditions that are generic to 
wound-field generators such as the P-3 generator were 
determined along with corresponding electrical 
signatures. Frequency domain features were developed 
to distinguish between healthy and degraded generators 
experiencing impending bearing failures using 
demodulated phase voltage. The results show that the 
accumulation of the max difference in PSD values per 
rotor and bearing diagnostic frequencies can be used to 
detect an aircraft generator’s general health and 
impending bearing failures well before failure occurs. 
The accumulated PSDmax diff metric for rotor and bearing 
diagnostic frequencies were able to detect as early as 20 
seconds and 300 seconds into the seeded bearing fault 
experiment that the generator was operating in degraded 
state, respectively. 
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