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Real-Time Adaptation of Mode Transition Controllers
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A real-time adaptation scheme is proposed for the online customization of mode transition controllers designed
of� ine via blending local mode controllers. It consists of the desired transition trajectory model, the active plant
model, and the mode transition controller. The active plant model, which incorporates local mode information, is
initially trained of� ine to capture the desired transition trajectory and controls. Afterward, the active plant model
is adapted online via structure and parameter learning to capture the input/output relationship of the nonlinear
system to be controlled. Likewise, the blending gains portion of the mode transition controller is determined of� ine
and is adapted online via structure and parameter learning to track the desired transition trajectory. The control
sensitivity matrix and the one-step-ahead predicted output of the controlled system are used to develop the desired
blending gains of the mode transition. The control sensitivity matrix and the predicted output are determined
from the active plant model. The proposed adaptation scheme is illustrated for a hover-to-forward-� ight mode
transition control of a helicopter encountering parametric changes and wind disturbances.

I. Introduction

C OMPLEX large-scale systems, such as unmanned aerial ve-
hicles and industrial processes, must possess the intelligence

required to behave in an autonomous manner under uncertain envi-
ronmental conditions.Typically, these systems are required to oper-
ate in a � nite number of operational modes that necessitate robust,
stable, and smooth transitions between them. A (local) operational
mode (ormode of operation) is consideredto be a small regionabout
an equilibriumpoint in which the system exhibitsquasi-steady-state
behavior. A mode transition (or mode-to-mode) controller refers to
a controller that transitions a system from a start mode of operation
to the goal mode. The problem of transitioning between two oper-
ational modes can be addressed by traditional control techniques,
such as gain scheduling,sliding mode control,and adaptivecontrol,
when a desired trajectory is given.

Although there is no consistent theory that deals with dynamic
transitions between various equilibria, gain scheduling has been
used to design equilibrium-to-equilibrium controllers. The tech-
nique of gain scheduling constructs a nonlinear controller by com-
bining the members of an appropriate family of linear controllers.
In conventional gain scheduling, the transition between equilibria
is governed normally by an auxiliary scheduling variable,1;2 which
should vary slowly with respect to the states. The disadvantagesas-
sociatedwith gain schedulinginclude a relianceon a long trial-and-
error design process, a lack of adaptability to online variations, and
poor robustness to uncertainties.3 The gain-schedulingprocedure is
generally as follows4¡7: 1) parameterize the equilibrium operating
points of the plant by a scheduling variable that involves some of
the plant states; 2) for a family of equilibrium operating points pa-
rameterized by a scheduling variable, linear models of the plant are
created and linear controllers are obtained for each linear model;
and 3) an interpolation technique is used to interpolate between
the linear controller gains for the equilibriumstart to equilibriumgoal

transition. Although gain-scheduled controllers are typically de-
signed using plant linearizationsat a number of equilibriumoperat-
ing points, it is possible to apply gain scheduling to control design
of linear time-varying systems obtained via linearizations relative
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to a trajectory.8¡11 To overcome the restriction to near-equilibrium
operation in traditional gain scheduling, a velocity-based gain-
scheduling controller design has been developed.12;13 This method
uses plant dynamics at equilibrium and nonequilibrium operating
points, which may lead to controller realizations that achieve better
performance than classical gain-schedulingcontrollers.

Similar to gainscheduling,slidingmodecontrol(SMC)usesmore
than one control law and is, in general, nonlinear.The performance
index is speci� ed as a manifoldof spacecalled the slidingsurface. A
sliding mode controller sends the system states onto the sliding sur-
face and keeps them there. However, as a result of high control gain,
SMC systems can suffer from the effects of actuator chatteringdue
to switching and imperfect implementations.14 When using SMC to
track a desiredtrajectory,it may becomepossiblefor theclosed-loop
system to become unstable if the sliding surface changes faster than
SMC can followit. InRef. 15, a slew-limitingpre� lter is proposedto
preprocess the reference trajectorysuch that the sliding surfacedoes
not drift too quickly for stable control. In Ref. 16, an SMC scheme
is developed that modi� es the reference trajectory to comply with
actuator limitations and suppression of residual oscillations at the
end of motion while competingagainst plant uncertainties.To over-
come the disadvantagesof the SMC systems, the fuzzy slidingmode
control (FSMC) has been introducedto providebetter damping and
reduced chattering.14 FSMC used for motion trajectory control is
described in Ref. 17. In Ref. 18, FSMC was used with a fuzzy logic
controller to track a prespeci� ed position-velocity trajectory for an
uncertain nonlinear system.

The basic objective of adaptive control is to maintain consistent
performanceof a system in the presenceof uncertaintyor unknown
variation in plant parameters. Typically, adaptive control is devel-
oped for multi-input/multi-output (MIMO) linear systems, single
input/single output (SISO) nonlinear systems, and certain classes
of MIMO nonlinear systems. In Refs. 19 and 20, the development
of adaptive controllers for a class of feedback-linearizable nonlin-
ear systems are described. Masino and Tomei have proposed an
adaptiveoutput feedbacktrackingcontrol for a classof SISO nonlin-
ear systemswith uncertaindifferentiabletime-varyingparameters.21

Recently, adaptive techniques based on the one-step-aheadcontrol
strategy have been developed for more general nonlinear systems.
Ma and Loh have proposed neural network-based one-step-ahead
control strategiesfor a class of nonlinearSISO systems.22;23 Tan and
Cauwenbergheproposeda nonlinearone-step-aheadcontrolscheme
based on a recurrent neural network model for nonlinear SISO
processes.24 The neural network model was trained via a recursive
least-squares(RLS) algorithm, and the gradientdescent update rate
for the control law was determined by stability considerations.For
general linear dynamical systems, a multivariable one-step-ahead
adaptive control scheme was proposed by Song and Hardt.25 The
adaptiveschemewas applied to an arc-weldingprocess in which the
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processparameterswere estimated using RLS. Finally, for a general
class of MISO nonlinearsystems, an adaptivequasi-one-step-ahead
control law was proposed by Mingzhong and Fuli.26 The control
law was derivedusing the sensitivitybetween the controlled system
inputandoutputand thequasi-one-step-aheadpredictiveoutput.The
sensitivity of the plant was estimated using RLS, and the predicted
output was obtained by a recurrent neural network.

In this paper, an adaptation scheme is proposed for the real-time
adaptationofmode transitioncontrollersdesignedviablendinglocal
mode controllers (BLMCs). The control objective of the adaptation
scheme is to adapt the blendinggains portionof the mode transition
controllers such that the nonlinear plant state vector tracks the de-
sired transition trajectory from a start mode of operation to a goal
mode. The adaptation scheme is composed of a desired transition
model, an active plant model, and an active controllermodel, which
is the mode transition controller. The desired transition model, the
active plant model, and the blendinggains portionof the active con-
trollermodel are representedvia a fuzzy neuralnetworkconstruct.27

All three fuzzy neural models are trained of� ine, and the latter two
models are adapted online. The active plant model is adapted via
structure and parameter learning to capture the input/output be-
havior of the nonlinear system to be controlled. The new blending
gains to be developedby mode transition controller are determined
from the control sensitivitymatrix and predictedoutputof the active
plant model. The parameter learning for the active plant and active
controller models uses local least-squares estimation.

In Sec. II, the fuzzy neural network construct used in the paper
is described brie� y. An overview of the systematic design of mode
transition controllers is given in Sec. III, and the online adaptation
of mode transition controllers is described in Sec. IV. Finally, in
Sec. V, the real-time adaptation scheme proposed in this paper is
illustrated for the hover-to-forward-�ight transition of a helicopter
encounteringparametric changes and wind disturbances.

II. Fuzzy Neural Networks
Recently, fuzzy neural networks (FNNs) have been used for im-

plementingfuzzy logic systems.FNNs combine the low-level learn-
ing and computational power of neural networks with high-level
reasoningand decisionmaking of fuzzy systems.27 The FNN model

Fig. 1 General con� guration of the FNN architecture.

of a desired input/output relation requires parameter learning and
possibly structure learning. Structure learning relates to the choice
of the number of fuzzy input partitions and the development of the
fuzzy rule base; parameter learning refers to the adjustment of the
network weights.27 The FNN constructs can be classi� ed into two
categories: 1) fuzzy neural structures based on the Takagi–Sugeno
inferencemethod with crisp consequentfunctions,28;29 and 2) fuzzy
neural structures of fuzzy rules and fuzzy consequents.29 The most
familiar member of the � rst category is the ANFIS architecture,
which employs a � xed fuzzy rule base while performing only pa-
rameter learning.30;31 A signi� cant member of the second category
uses both structure and parameter learning.30

The fuzzy neural structure proposed by Theocharis and
Vachtsevanos27 is considered in this section. This FNN structure
consists of a fuzzy rule base of Takagi–Sugeno fuzzy rules, with
the rule consequents being linear polynomials of the input premise
variables. Both structure learning and parameter learning are used
to adaptively develop the FNN construct. The structure learning
inserts new membership functions, creates new fuzzy rules, and se-
lects initial parameters of the new rules on the basis of the desired
output data. The parameter learningupdates the mean and deviation
of gaussian membership functions and the consequent weights via
the back propagation algorithm.

A. Structure
The fuzzy neural architectureproposed in Ref. 27 is divided into

the premisepart, the consequentpart, and the defuzzi� cation part, as
shown in Fig. 1. The premise module partitions the premise space,
assigns membership functions to each premise cell, and develops
the rule base of fuzzy rules. The consequent module consists of
the rule consequents being linear polynomials of the input premise
variables. Finally, the defuzzi�cation module combines the � ring
strengths of the rules and the rule output functions to provide the
� nal systemoutput.Therefore,this FNN constructrealizesthe fuzzi-
� cation, fuzzy reasoning, and defuzzi� cation functionalities of a
connectional fuzzy inference mechanism.

Let x D [x1; : : : ; xm ]T and y D [y1; : : : ; yp]T denote the input and
output vectors of the FNN, respectively.The fuzzy rule base of the
FNN consists of a collection of N fuzzy rules of the form:
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R. j /: IF x1 is A1 j AND x2 is A2 j AND ¢ ¢ ¢ AND xm is Am j THEN

f 1
j D w1

0 j C w1
1 j x1 C ¢ ¢ ¢ C w1

m j xm AND ¢ ¢ ¢ AND

f p
j D w

p
0 j C w

p
1 j x1 C ¢ ¢ ¢ C w

p
m j xm (1)

where f `
j denotes the j th rule output associated with the `th output

component y`. w`
0 j ; : : : ; w`

i j ; : : : ; w`
m j are the polynomial coef� -

cients linearly connecting the input variables to the f `
j consequent

function.Finally, A1 j ; : : : ; Ai j ; : : : ; Am j are labels of the fuzzy sets
in the premise space associated with the j th rule R. j /.

Each linguisticlabel Ai j is associatedwith a gaussianmembership
function, ¹Ai j .xi /, which speci� es the degree to which a given xi

satis� es the quanti� er Ai j :

¹Ai j .xi / D exp

µ
¡1

2

.xi ¡ m i j /
2

¾ 2
i j

¶
(2)

where m i j and ¾i j denote the mean and standard deviation of the
gaussian membership function. The degree of ful� llment (or the
� ring strength) of each rule R. j / is taken as

¹ j .x1; : : : ; xm/ D ¹A1 j .x1/ £ ¢ ¢ ¢ £ ¹Am j .xm / (3)

Given an input vector x, the `th output component y` of the fuzzy
system is inferred as follows:

y` D
PN

j D 1 ¹ j ¢ f `
jPN

j D 1 ¹ j

; ` D 1; : : : ; p (4)

The inferred outputs of Eq. (4) result from the application of the
weighted-averagedefuzzi� cation method.

B. Learning Algorithm Using no Local Model Information
The learning algorithm of this section uses both structure learn-

ing and parameter learning to determine the premise part structure
and the appropriatepremise/consequentparameters of a fuzzy neu-
ral network. Structure learning determines the appropriate fuzzy
neural structure by performing membership function insertion and
parametersetting of initial premise/consequentparametersof newly
established rules. Parameter learning updates the mean and devia-
tion of gaussian membership functions and the consequentweights
via the back propagationalgorithm.Details of the structure learning
and parameter learning algorithms can found in Ref. 27.

C. Learning Algorithm Using Local Model Information
The learning algorithm of this section also uses both structure

learningand parameter learningto determine the premisepart struc-
ture and the appropriatepremise/consequentparametersof an FNN.
Structure learningdetermines the appropriatefuzzy neural structure
by performing membership function insertion and parameter set-
ting of initial premise/consequent parameters of newly established
rules. Parameter learning updates consequent weights via a local
least-squares estimation technique.32

1. Structure Learning with Local Model Information
Structure learning using local model information is exactly same

as the structure learning scheme described in Ref. 9, except that the
new rules’ consequentweights are initialized in the following way:2
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w1
0;N C 1 w1

1;N C 1 ¢ ¢ ¢ w1
m;N C 1

:::
:::

:::
:::

w
p
0;N C 1 w

p
1;N C 1 ¢ ¢ ¢ w

p
m;N C 1

3

775

D

"
y.tk C 1/ ¡ @y

@x
x.tk C 1/


@y
@x

#
(5)

where x.tk C 1/ is the model input at tk C 1 , y.tk C 1/ is the desired
output correspondingto x.tk C 1/, and @y=@x is the Jacobian matrix
de� ned at x.tk C 1/.

2. Parameter Learning via Local Least-Squares Estimation
Considera trainingdataset SM comprising M entriesof input/out-

put pairs of the form: SM D f[xd .tk /, yd.tk /], k D 1; : : : ; Mg, where

xd.tk/ D [xd
1 .tk/; : : : ; xd

m.tk/]T and yd .tk / D [yd
1 .tk /; : : : ; yd

p.tk /]T

denote the desired input and output vectors of the FNN model,
respectively.Let SM j denote the local training set composed of in-
put/ output pairs of SM limited to the receptive � eld of the j th rule:
SM j D f.xd ; yd/ 2 SM , ¹ j .xd/ ¸ ¹ming, where ¹min is the rule � ring-
strength threshold. Parameter learning involves the computation of
N locally weighted least-squares regressions, one for each rule,
using only the training data within the rule’s receptive � eld. The
consequent weights are not updated for rules having zero training
data within the receptive � eld. For fyd .tk /; xd.tk/g 2 SM j , we have
the following equations:

y.tk / D [y1.tk/ ¢ ¢ ¢ yp.tk /]T D W j

µ
1

xd .tk /

¶

D
£
Ny j Wb

j

¤ µ
1

xd .tk / ¡ Nx j

¶
(6a)

yd.tk / ¡ y.tk/ D
£
D Ny j D Wb

j

¤
k

µ
1

xd .tk / ¡ Nx j

¶
(6b)

W j D

2
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Wa
j D Ny j ¡ Wb

j Nx j (6d)

where W j is the consequent parameters of the j th rule, Nx j is
the center of the j th rule such that ¹ j .Nx j / D 1, Ny j is the conse-
quent output of the j th given the input Nx j , and k D 1; : : : ; M j .
Let Y D [y.t1/ ¢ ¢ ¢ y.tM j /]

T and Yd D [yd .t1/ ¢ ¢ ¢ yd.tM j /]
T . De-

termine D V j D [ D Ny j D Wb
j ]

T such that it minimizes the following
weighted least-squaresperformance index for the j th rule:

P j D
£
.Yd ¡ Y/ ¡ U j ¢ D V j

¤T
Q j

£
.Yd ¡ Y/ ¡ U j ¢ D V j

¤
(7)

where

Q j D diag
©
½ j

£
xd .t1/

¤
; : : : ; ½ j

£
xd

¡
tM j

¢¤ª

U j D

"
1 1

¢ ¢ ¢
xd .t1/ xd .tM j /

#T

½ j

£
xd .tk /

¤
D

¹ j

£
xd.tk /

¤
PM j

v D 1 ¹ j

£
xd.tv/

¤ ; K D 1; : : : ; M j

Therefore,

@P j

@f D V j g
D 0 D ¡

£
.Yd ¡ Y/ ¡ U J ¢ D V j

¤T
Q j U j

) D V j D
£
D Ny j D Wb

j

¤T D
¡
U T

j Q j U j

¢¡1
U T

j Q j .Yd ¡ Y/

(8)

The consequent parameters for the j th rule are updated using the
following equation:

W j .t C 1/ D W j .t/ C D W j .t/ (9)

where D W j D [ D Wa
j j D Wb

j ], D Wa
j D D Ny j ¡ D Wb

j Nx j and the
terms D Ny j and D Wb

j are determined from Eq. (8).

3. Learning Procedure
1) Use a subset of the training dataset to perform network ini-

tialization. This network initialization is conducted of� ine using
structure learning.

2) Perform structure learning if necessary.
3) Perform parameter learning.
4) Repeat steps 2 and 3 for all training data entries.
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D. FNN Linear Incremental Model
Let x D [x1; x2; : : : ; xm ]T and y D [y1; y2; : : : ; yp]T denote the in-

put and output vectors, respectively, of the FNN model depicted in
Fig. 1. Suppose that the FNN model has N fuzzy rules. Then, the
rsth element of the incremental model of the FNN model is

µ
@y
@x

¶

rs

D @yr

@xs
D

NX

v D 1

³
@yr

@¹v

@¹v

@xs
C @yr

@ f r
v

@ f r
v

@ xs

´
(10)

where r D 1; : : : ; p and s D 1; : : : ; m; ¹v denotes the � ring strength
of the vth fuzzy rule, and f r

v denotes the rule consequent functions
for the r th outputand the vth fuzzy rule. Therefore, the r sth element
of the incremental model of the FNN model is given by

µ
@y
@x

¶

rs

D

PN
v D 1 ¹v

µ¡
yr ¡ f r

v

¢
.xs ¡ msv/=¾ 2

sv C wr
sv

¶

PN
`

¹`

(11)

where

@yr

@yv

D
f r
v ¡ yrPN
` D 1 ¹`

;
@¹v

@xs
D ¡¹v ¢ .xs ¡ msv/

¾ 2
sv

@yr

@ f r
v

D ¹vPN
` D 1 ¹`

;
@ f r

v

@xs
Dwr

sv

¹v denotes the � ring strength of the vth fuzzy rule, f r
v denotes the

ruleconsequentfunctionsfor ther th outputand thevth fuzzyrule, yr

is the r th componentof the output vector, xs is the sth componentof
the input vector,msv and ¾sv denote the mean and standarddeviation
parameters of the gaussian membership function ¹Asv

, and wr
sv is

the consequent parameter corresponding to sth input component,
r th output component, and the vth fuzzy rule.

III. Of� ine Design of Mode Transition Controllers
A. Mode Transition Problem

Given a large-scaledynamical system represented by the follow-
ing state equation:

Px D F.x; u/; x 2 Rn; u 2 Rm (12)

it is assumed that the system is composed of Ns subsystems Si ,
i D 1; 2; : : : ; Ns , where each subsystem represents an operational
mode of the system. The state equation for the i th subsystem is

Pxi D fi .xi ; ui /; xi 2 Rni ; ui 2 Rm i (13)

Let modep and modeq denote the pth and qth subsystem, respec-
tively. How do we design a controller that stably and smoothly
transitions a system from modep to modeq ?

B. Of� ine Control Design
An of� ine design methodology known as the BLMC ap-

proach was developed by Rufus et al. to design mode transition
controllers.33 This approach for designing mode transition con-
trollers used the aggregated states of the start and goal modes, and
the output vector of the mode transition controller was determined
by blending the individual output vector of the start and goal mode
controllers. The following is an outline of the BLMC approach:

1) Design regulators for the start and goal modes such that initial
states are driven to the equilibrium of the respective modes.

2) Model the dynamics that correspond to the aggregated states
and controls of the start and goal mode so that a transitional path
from the start mode to the goal mode can be determined.

3) Determine an optimal transitional path from the equilibrium
state of the start mode to the equilibrium state of the goal mode by
solving a nonlinear optimal control problem.

4) Determine the desired blending gains using the desired state
and control trajectory determined from step 3.

5) Realize the blending gains via an FNN construct.27

The structure of a mode transition controller designed via the
BLMC method is shown Fig. 2, where xpq is the aggregated state
vector of xp and xq ; xpq is the aggregated control vector of up

and uq ; xp and xq denote the state vectors of modep and modeq ,

Fig. 2 Mode transition controller structure.

Fig. 3 Con� guration for indirect adaptive mode transition control.

respectively; up and uq denote the control input vectors of modep

and modeq , respectively;x¤
p and x¤

q denote the equilibriumof modep

and modeq , respectively; and Kp and Kq are the blending matrices
that are functions of xpq .

IV. Online Adaptation of Mode Transition Controllers
In this section, an adaptation scheme is proposed for the online

customization of a modep to modeq controller designed of� ine via
the BLMC method. The control objective is to adapt the blending
matrices such that the plant output vector tracks the output vector of
a desired transitionmodel. Note that the online adaptationof a nom-
inalmode transitioncontrolleris basedon a discrete-timeadaptation
scheme, which is applied to a continuous-timesystem. To apply the
discrete-time controller scheme to a continuous-time system, it is
assumed that the sample rate has been appropriately selected.

Figure 3 shows the con� gurationfor indirect,adaptivemode tran-
sition control. The desired transition model is a fuzzy neural model
of the desired mode transition trajectory that is trained of� ine only.
The active controllermodel representsthe mode-to-modecontroller
where theblendingmatricesare adaptedonline.The controlleradap-
tation mechanism computes the best control values at each sample
tk using incremental linear model information from the active plant
model, and it adapts the active controller model to capture the cur-
rent input and the best control output values at time tk . The active
plant model is a fuzzy neural model of the unknown nonlinear plant
along the desired mode transition trajectory; it is trained of� ine and
adaptedonline using the plant adaptationmechanism to account for
plant variations in real time.

A. Desired Transition Model
An of� ine trained fuzzy neural model of xd

pq.tk/ ! xd
pq .tk C 1/ is

determined for k D 0; : : : ; N1 where tk C 1 ¡ tk D .t f ¡ t0/=N1. Note
that when tk ¸ t f , then xd

pq .tk / D xd
pq.tk C 1/ D xd

pq.t f /.
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B. Active Plant Model
Given xd

pq.tk / and ud
pq.tk / for k D 0; : : : ; N1 where tk C 1 ¡ tk D

.t f ¡ t0/=N1 , a fuzzy neural model of the mapping f[xd
pq.tk/;

ud
pq.tk/] ! xd

pq.tk C 1/g for k D 0; : : : ; N1 is determined by of� ine
training.Also, the linearmodel information@xpq.tk C 1/=@xpq.tk / and
@xpq.tk C 1/=@upq.tk/ de� ned at [xd

pq.tk /; ud
pq .tk /] are incorporated

into the consequent part of the fuzzy neural model. Afterward, the
active plant model is adapted online via the plant adaptation mech-
anism.

C. Plant Adaptation Mechanism
The active plant is adapted online to account for plant variations

in real time. At time instant tk , the adaptation of the active plant
model is accomplished by performing structure/parameter learning
on the basis of the current input/output data f[xpq.tk /; upq .tk /] !
xpq.tk C 1/g. Because a desired output is not known ahead of
time when structure learning is performed on the incoming input
[xpq .tk /; upq .tk /], the strongest � red rule’s consequence is used.
Likewise, the strongest � red rule’s consequentparameters are used
to initialize the consequent parameters of the newly formed rule
because the required linear model information is not known ahead
of time.

D. Active Controller Model
The active controller model is the modep to modeq controller.

Given xd
pq.tk/ and kpq .tk / for k D 0; : : : ; N1 where tk C 1 ¡ tk D

.t f ¡ t0/=N1 , a fuzzy neural model of the mapping xd
pq .tk /; !

kpq.tk/ for k D 0; : : : ; N1 is determined by of� ine training as de-
scribed in step 5 of Sec. III.B. Afterward, the blending weights of
the active controller model are adapted online using the controller
adaptation mechanism.

E. Controller Adaptation Mechanism
Let ACM and APM denote the active controller model and the

active plant model, respectively.Let upq .tk / be the currently devel-
oped control input by the ACM that correspondsto xpq .tk /. Suppose
that xd

pq.tk/ represents the desired trajectory at tk provided by the
desired transition model. Let u0

pq.tk / denote the control that is to
be developed such that it is the weighted least-squares (WLS) op-
timal control value at tk . The plant output vector corresponding
to u0

pq .tk / is denoted as x0
pq.tk /. Let Qupq.tk/ D u0

pq .tk / ¡ upq.tk/ and
Qxpq.tk/ D x0

pq .tk / ¡ xpq.tk/. Supposingthat the Qupq.tk / is suf� ciently
small:

Qxpq .tk C 1/ D @xpq .tk C 1/

@upq .tk /
Qupq .tk / D D[xpq .tk /; upq.tk/] ¢ Qupq .tk / (14)

where D[xpq .tk /; upq.tk/] is the control sensitivity matrix. Let
Qxd

pq.tk C 1/ D xd
pq.tk C 1/ ¡ xpq .tk C 1/ and Nxpq.tk C 1/ D xd

pq.tk C 1/ ¡
x0

pq.tk C 1/. Therefore, Qxd
pq.tk C 1/ D D ¢ Qupq .tk / C Nxpq.tk C 1/.

The optimal control input increments Qupq.tk / are determinedsuch
that the following performance index is minimized:

J D 1
2
Nxpq.tk C 1/ ¢ Q ¢ Nxpq.tk C 1/; Q > 0 (15)

Therefore,

@ J

@ Qupq.tk /
D 1

2
¢
µ

@ Nxpq.tk C 1/

@ Qupq.tk /

¶T

¢ @ J

@ Nxpq .tk C 1/
D 0 (16)

where
@ J

@ Nxpq.tk C 1/
D 2 ¢ Q ¢ Nxpq .tk C 1/;

@ Nxpq.tk C 1/

@ Qupq .tk /
D ¡D

Using Eq. (16) and Qxd
pq.tk C 1/ D D ¢ Qupq.tk / C Nxpq .tk C 1/,

@ J

@ Qupq.tk/
D ¡DT ¢ Q ¢ Nxpq .tk C 1/ D 0

) DT ¢ Q
©

Qxd
pq.tk C 1/ ¡ D Qupq .tk /

ª
D 0 (17)

Solving for Qupq.tk / in Eq. (17) yields

Qupq.tk/ D [DT ¢ Q ¢ D]¡1DT ¢ Q ¢ Qxd
pq.tk C 1/ (18)

Therefore, the WLS optimal control value is determined to be

u0
pq.tk/ D upq.tk/ C [DT ¢ Q ¢ D]¡1DT ¢ Q ¢ Qxd

pq.tk C 1/ (19)

The steps of the controller adaptation mechanism algorithm are
1) Apply the ACM to xpq.tk / and produce the current initial es-

timate of the control input to upq .tk /. Because it is possible for the
fuzzy neural model of the blending weights not to be suf� ciently
activatedby xpq.tk/, structurelearningwith localmodel information
is performed at this stage.

2) Input upq.tk/ and xpq .tk / to the APM and produce
Oxpq.tk C 1/. Calculate Qxd

pq .tk C 1/ using the predictive one-step-ahead
output Oxpq.tk C 1/ in place of the unavailable output xpq.tk C 1/.

3) The true control sensitivity matrix D[xpq.tk/, upq .tk /] is ap-
proximatedvia the APM’s incrementalcontrolmatrix OD, which can
be calculated from Eq. (19). When the APM is not suf� ciently acti-
vated by .xpq .tk /; upq.tk//, the control sensitivity information con-
tained in the strongest � red rule’s consequenceis used to determine
OD.

4) Compute the adjustedcontrol law, u0
pq .tk / D upq.tk/ C [ ODT ¢Q ¢

OD]¡1 ODT ¢ Q ¢ Qxd
pq.tk C 1/. Afterward, calculate the desired blending

weights k0
pq .tk /.

5) Train the ACM to capture the desiredblendingweights k0
pq .tk/

given current input xpq .tk /. Note that parameter learning with local
model information is used to train the ACM.

6) Put tk Ã tk C 1 and perform the same procedureat the next time
tk C 1.

V. Hover-to-Forward-Flight Example
A. Model of Helicopter’s Forward Dynamics

The of� ine design approach described in Sec. III.B is used to
design a hover-to-forward-�ight (FF) transition controller for the
following model representing the longitudinalchannel dynamics of
an Apache helicopter34 constrained to have no verticalmotion; only
longitudinal and pitch rotation motions are allowed:

X D X trim C X Px . Px ¡ Pxtrim/ C X Pµ . Pµ ¡ Pµtrim/ C X ±e .±e ¡ ±e;trim/

M D Mtrim C M Px . Px ¡ Pxtrim/ C M Pµ . Pµ ¡ Pµtrim/ C M±e .±e ¡ ±e;trim/

Rx D X=[m ¢ cos.µ /] ¡ g ¢ tan.µ/; Rµ D M=IY

where Rx , Rµ , and ±e represent the forward acceleration (ft/s2 ), pitch
angle acceleration (rad/s2), and longitudinal cyclic input (deg), re-
spectively. X represents the aerodynamic force along the x axis
and M represents the pitching moment about the y axis. Figure 4
shows the axis system of the helicopterwith respect to the sideview.
Table 1 describes the aerodynamic and physical parameters of the
longitudinal channel dynamics model. The parameters X trim , X Px ,
X Pµ , X ±e , Mtrim , M Px , M Pµ , M±e , Pxtrim , Pµtrim , ±e;trim are functions of Px .
The physical constants m and IY have values of 4:5528£ 102 and
3:7409£ 104, respectively.The state vector of the helicoptermodel
is [x1 x2 x3 x4]T D [ Px Rx µ Pµ ]T . It is assumed that the output vec-
tor of the model is the same as the state vector.

B. Hover-to-Forward-Flight Mode Controller
1. BLMCs Approach

The followingcontrollawwas usedfor thehover-to-FFcontroller:

±e D ±e;hov. Px; Rx; µ; Pµ/ ¢ Khov. Px; Rx; µ; Pµ/

Fig. 4 Side view of helicopter’s axis system.
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Table 1 Description of aerodynamic and physical parameters

Parameters Description

X Px Partial derivative of X w.r.t. Px
X Pµ Partial derivative of X w.r.t. Pµ
X±e Partial derivative of X w.r.t. ±e
Xtrim Trim value of aerodynamic force X
M Px Partial derivative of M w.r.t. Px
M Pµ Partial derivative of M w.r.t. Pµ
M±e Partial derivative of M w.r.t. ±e
Mtrim Trim value of aerodynamic moment M
Pxtrim Trim value of forward velocity Px
Pµtrim Trim value of pitch angle rate Pµ
±e;trim Trim value of longitudinal input ±e
m Mass of the helicopter
IY Moment of inertia along y axis

C ±e;FF. Px; Rx; µ; Pµ/ ¢ KFF. Px; Rx; µ; Pµ/

where ±e;hov.¢/ and ±e;FF.¢/ are linear quadratic regulators that regu-
late about the operating points

[ Px Rx µ Pµ ]T D [0:0000 0:0000 0:1008 0:0000]T

and

[ Px Rx µ Pµ ]T D [92:8278 0:0000 0:0402 0:0000]T

respectively. The scalar gains Khov. Px; Rx; µ; Pµ/ and KFF. Px, Rx , µ , Pµ /
are determined such that the closed-loop system transitions from
[0.0000 0.0000 0.1008 0.0000]T to [92.8278 0.0000 0.0402
0.0000]T in minimum time with the following constraints:

¡1:0000 · Px · 94:0000; ¡2:5000 · Rx · 20:0000

¡0:7000 · µ · 0:7000; ¡0:6000 · Pµ · 0:6000

¡6:5000 · ±e · 4:5000

Afterward, theblendinggains Khov. Px; Rx; µ; Pµ/ and KFF. Px; Rx , µ; Pµ /
are realized via an FNN construct described in Sec. II.

2. Gain-Scheduling Approach
A gain-scheduledcontrolleris designedviadynamic linearization

about the minimum time trajectory determined in Sec. V.B.1:
1) Sixty-seven equidistant frozen times t1; : : : ; t67 are chosen,

where tk C 1 D .t f ¡ t0/=66.
2) Sixty-sevenlinearautonomousopen-loopsystemsare obtained

via Lyapunov linearizationof the helicopter model about the mini-
mum time state and control trajectories at frozen times t1; : : : ; t67.

3) Sixty-seven linear quadratic regulators are designed for each
time-frozen linear model of the helicopter created in the previous
step.

4) The 67 linear control laws are blended according to how near
the current state is to each of the frozen operating states determined
in the � rst step. The interpolatedcontrol law is applied to the system
to be controlled.

3. Least-Squares Adaptation Scheme
The sample time of TS D 0:05 s is chosen for the adaptation

scheme. The desired minimum time trajectory and control are re-
sampled such that they occur every TS : xd.tk/ and ud.tk / for k D
0; : : : ; N , where xd .tk / D [ Pxd .tk / Rxd .tk / µ d .tk / Pµ d.tk /]T , ud.tk/ D
[±d

e .tk /] and tk C 1 ¡ tk D TS . tN ¸ t f and tN ¡ t f < TS . Afterward, the
desired transition model of the following mapping is determined
of� ine:

xd.tk/ ! xd.tk C 1/; k D 0; : : : ; N

The APM is initially determined of� ine for the following mapping:
©£

xd .tk /; ud .tk/
¤

! xd .tk C 1/
ª

for k D 0; : : : ; N

Also, the linear model information de� ned at [xd .tk /, ud .tk /] for
k D 0; : : : ; N

@x.tk C 1/

@x.tk /
;

@x.tk C 1/

@u.tk/

is incorporated into the consequentpart of the APM.
The plant adaptation mechanism adapts the APM with the fol-

lowing parameters:

± D 0:2; ¯ D 0:5

¾U D
£
¾U

1 : : : ¾ U
5

¤
D [0:20 0:20 0:05 0:05 0:20]

where ±, ¯, and ¾U are the lower threshold for membership value,
the desired overlap degree between membership functions, and the
upper limit of the width of each membership function, respectively.

The ACM is the hover-to-FF mode controller determined in
Sec. V.B.1. The controller adaptation mechanism adapts the blend-
ing weights of the active controller model with the following
parameters:

± D 0:2; ¯ D 0:5

¾U D
£
¾ U

1 ¢ ¢ ¢ ¾ U
4

¤
D [0:20 0:20 0:05 0:05]

C. Simulation Results
Figures 5–8 show the Px , Rx , µ , and Pµ trajectories with respect

to nominal parameters and no wind disturbance for the controllers
designed in Sec. V.B.1 and V.B.2. The controller designed via the

Fig. 5 Plots of Çx nominal trajectories.

Fig. 6 Plots of Èx nominal trajectories.
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Fig. 7 Plots of µ nominal trajectories.

Fig. 8 Plots of Çµ nominal trajectories.

Fig. 9 Plots of MSEs for controller designed via BLMC approach.

BLMC approachexhibits good tracking performanceof the desired
transitiontrajectoryfor the nominal system,but the gain-scheduling
controllerhas poor trackingperformance.This result is not unusual,
because the � rst controller is designed to track the desired trajectory
for the nominal system, and the gain-scheduling controller design
does not necessarilyguarantee good transient behavior when track-
ing a desired trajectory.

For thecontrollersdesignedin Sec.V.B.1 andV.B.2, Figs.9 and10
show the mean squared error (MSE) from the desired transition

Fig. 10 Plots of MSEs for gain-scheduling controller.

Fig. 11 Plots of MSEs for adaptation with approximate plant
information.

trajectory for wind disturbances and parametric changes of X ±e .
Although the gain-schedulingcontrollerexhibits good trackingper-
formance for percentage changes of X ±e between 6 and 50%, the
controller designed via the BLMC approach possesses a more ro-
bust tracking performance over the range of parameter changes of
X ±e . In particular, the average MSE due to parametric changes of
X ±e is approximately 17.5 and 78.3 for the controllers designed via
theBLMC approachand thegain-schedulingapproach,respectively.
Also, for thecase of ¡20–20 ft/s wind disturbance,thecontrollerde-
signed via the BLMC approach outperformed the gain-scheduling
controller. Although the controller designed in Sec. V.B.1 exhib-
ited no controller faults, the gain-scheduling controller did not
transition the system from [0.0000 0.0000 0.1008 0.0000]T to
[92.8278 0.0000 0.0402 0.0000]T for wind disturbancesbetween
5 and 20 ft/s.

For the adaptation of the controller designed in Sec. V.B.1,
Figs. 11 and 12 show the MSE from the desired transition trajec-
tory for wind disturbances and parametric changes of X±e . If the
approximate plant accurately captures the local model information
and the input/output behavior of the system to be controlled, the
adapted controller exhibits excellent tracking performance when
encountering parametric changes and wind disturbances. Because
the adaptation scheme adapts the controller of Sec. V.B.1 such that
the future error is erased, the aggressivenessof the scheme can lead
to controller faults when the approximate plant poorly models the
system to be controlled, as shown in Fig. 11. Tables 2 and 3 show
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Table 2 Results for various controllers encountering parametric
changes of X±e

Average Minimum Maximum Controller
Controllers MSE MSE MSE faults

BLMC approach 17.4822 0.0136 73.8291 0
Gain-scheduling 78.3444 0.1158 560.3075 0

approach
Adaptation with 2.4625 0.0021 89.1941 3

approx. plant info
Adaptation with 0.2477 0.0001 1.3411 0

perfect plant info

Table 3 Results for various controllers encountering
wind disturbances

Average Minimum Maximum Controller
Controllers MSE MSE MSE faults

BLMC approach 3.6106 0.0164 8.1026 0
Gain-scheduling 80.2857 45.4705 181.1169 16

approach
Adaptation with 0.1957 0.0014 0.5747 0

approx. plant info
Adaptation with 0.1219 0.0001 0.4452 0

perfect plant info

Fig. 12 Plots of MSEs for adaptationwith accurate plant information.

that the adaptation scheme can lead to smaller trackingerrors in the
presence of parametric changes and wind disturbances. Note that
the average, minimum, and maximum MSEs are calculated from
successful mode transitions.

VI. Conclusions
An adaptation scheme is proposed for the real-time adaptation

of mode transition controllers designed via blending local mode
controllers. When the APM of the adaptation scheme is a good
approximation of the system to be controlled, then it is expected
that the adaptedcontrollerwill track the desired trajectoryvery well
in the presence of parametric changes and disturbances. However,
if the APM does not capture the local model and the input/output
behavior of the system to be controlled, poor tracking performance
to unstable tracking can result. The incremental control law to re-
move the future error needs to be modi� ed to take into account the
previously predicted output errors and errors due to approximating
the control sensitivitymatrix. Another way of preventingcontroller
faults will be to decrease the aggressivenessof the scheme when ap-
proximation errors are signi� cant and increase the aggressiveness
when the errors are small.
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