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Robust Stability of Mode-to-Mode Fuzzy Controllers

Freeman Rufus¤ and George Vachtsevanos†

Georgia Institute of Technology, Atlanta, Georgia 30332-0250

An approximatemethod is formulated for analyzing the performance of nonlinear systems controlled by mode-
to-mode fuzzy controllers. It is assumed that an approximate model of the nominal plant is available and the
nominal mode-to-mode trajectory converges asymptotically from the start mode to the target mode of operation.
Stability of the nominal mode-to-mode trajectory in the presence of small, bounded variations of the system’s
parameters or the initial conditions is considered. The method is based on formulatinga performance measure as a
Lyapunov function of the error between the nominal and perturbed mode-to-mode trajectories. The sensitivity of
the deviations from the nominalmode-to-mode trajectory with respect to parametric or initial conditionvariations
is incorporated into the total differential of this performance measure. Using a Lyapunov stability condition, the
robustness of the closed-loop system is analyzed by observing a de� niteness condition of a time-varying matrix. A
measure of robustness is then formulated using the largest singular value of a time-varying matrix. A hover mode
to forward � ight mode fuzzy controller is used to illustrate the methodology.

I. Introduction

A LTHOUGH an often-mentioned reason for using fuzzy logic
controllers is the lack of an accurate system model, the avail-

ability of an approximatedynamicalmodel of the plant has not been
fully explainedwhen addressingissues of robust performancein the
design of such control strategies. In Refs. 1 and 2, an attempt was
made to bridge the gap between precise performance speci� cations
and the use of fuzzy logic controllersalong with an approximatedy-
namical model of the plant to be controlled. This attempt involved
formulating a performancemeasure as a Lyapunov-likefunction of
the error dynamics of the nominal plant. This performancemeasure
also incorporatedaheuristicmeasureof the system’s errorsensitivity
with respect to parametricvariations.The robust stability addressed
in this context was stability convergence to an equilibrium point in
the presence of small parametric perturbations. Inequality bounds
were derived for the sensitivity,error deviation,and parameter devi-
ations in terms of fuzzy quantities. Finally, a measure of robustness
was formulated using singular values. This methodology was used
to analyze the robustness of an automotive engine idle speed fuzzy
controller.1

In this paper, the formulation in Refs. 1 and 2 is extended to study
the robust stability of the nominal trajectory of a mode-to-mode
fuzzy controllerwhere the trajectory is consideredto be feasible (or
realistic). Given a nominal mode-to-mode trajectory that converges
asymptotically from the equilibrium point of the start mode to the
equilibrium point of the target mode of operation, the stability of
this nominal trajectory, in the presence of variationsof the system’s
parametersor initial conditions, inherently addresses the robust sta-
bility of the closed-loopsystem. The robust stability of the nominal
mode-to-mode trajectory is considered because perturbed trajecto-
ries that remain close to the nominal trajectory will also transition
from the start mode to a small neighborhood around the equilib-
rium point of the target mode. Because the robust stability of the
nominal trajectory is considered, the performance measure is for-
mulated as a Lyapunov function of the error between the nominal
and perturbed trajectories.The total differentialof this performance
measure also incorporatesthe sensitivityof the trajectory error with
respect to parametric or initial condition variations. The robustness
of the closed-loop system is analyzed by observing a de� niteness
conditionof a time-varyingmatrix. A measure of robustness is then
formulated using the in� nity norm of a time-varying matrix. Fi-
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nally, a hover mode to forward � ight (FF) mode controller is used
to illustrate the methodology.

II. Robust Stability Analysis
of Mode-to-Mode Controllers

A. Introduction to Mode-to-Mode Transition Problem
Statement of Problem

A large-scale dynamic interconnected system is represented by
the following state equation:

Px D F.x; u; t/; x.t0/ D x0; x 2 Rn; u 2 Rm

It is assumed that the system can be decomposed into N intercon-
nectedsubsystems Si , i D 1; 2; : : : ; N ; whereeach subsystemrepre-
sents themodesof operationand the i th subsystem’s stateequationis

Pxi D fi .xi ; ui ; t/ C
N

j D 1
i 6D j

gi j .x j ; t/; xi .t0/ D x0
i

x j 2 Rn j ; u j 2 Rm j ; gi j .x j ; t/ 2 Rni

where gi j .x j ; t/ representsthe couplingterm becauseof the j th sub-
system. How do we design a hierarchical controller that stabilizes
each mode of operation locally and is able to transition between
modes stably?

Approach
Although this paper will present robust stability results using a

mode-to-modecontrollerdesignedvia the phaseportraitassignment
algorithm (PPAA), there are many alternate techniquesavailable to
smooth control transition from one mode to another. For exam-
ple, given a speci� ed mode-to-mode trajectory, piecewise smooth
controls can be determined such that the error between the system
output vector and the speci� ed trajectory is minimized in the least-
squares sense.3 If a speci� ed trajectory is not given, then piecewise
smooth controls can be determined using nonlinear programming
techniques such that the resultant mode-to-mode trajectory satisfy
some smoothness criteria.4

Let modep and modeq denote the pth and the q th subsystem
modes, respectively. Using the PPAA, a modep-to-modeq transi-
tional controller is designed with knowledge about the states of
modep and modeq , and the outputs of the modep and modeq con-
trollers. The outputs of the modep -to-modeq controller are deter-
mined by blending the outputs of the modep and modeq controllers.
The blendingweightsforeachmodecontrolleraredeterminedby the
PPAA. A detailed description of the PPAA and its fuzzy hypercube
implementationplatform may be found in Refs. 5–7. The following
is an outline for the design of the modep -to-modeq controller.
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Fig. 1 Block diagram of modep and modeq feedback systems.

1) Design local controllers for modep and modeq . For the operat-
ing modes modep and modeq , models are constructed that capture
their local dynamics. Afterward linear or nonlinear state feedback
controllersaredesignedfor the two operatingmodes.The controllers
are designedto regulate initial statesbelongingto modep and modeq

to the equilibriumpoint of modep and modeq , respectively.Figure 1
shows the feedback structure of the mode controllers, where the
equilibrium point of modep and modeq is the desired command.

The dynamical equationsof modep and modeq , respectively,may
be written as

Pxp D fp.xp; up/; xp.t0/ D x0
p ; xp 2 Rn p ; up 2 Rm p

up D ’p xp ¡ x¤
p

Pxq D fq.xq ; uq/; xq .t0/ D x0
q ; xq 2 Rnq ; uq 2 Rmq

uq D ’q xq ¡ x¤
q

where x¤
p and x¤

q denote the equilibriumpoints of modep and modeq ,
respectively; ’p and ’q are linear or nonlinear functions of xp

and xq .
2) Model combined dynamics of modep and modeq . A model of

the dynamical system is constructed that incorporates the dynamics
of modep , modeq , and their correspondingcoupling dynamics:

Pxpq D f.xpq ; upq /; xpq .t0/ D x0
pq

xpq 2 Rn pq ; upq 2 Rm pq

where xpq is the vector of distinct elements of [xT
p xT

q ]T I upq is
the vector of distinct elements of [uT

p uT
q ]T I xp and xq denote the

states of modep and modeq , respectively;and up and uq denote the
control inputs of modep and modeq , respectively. Given the local
models of modep and modeq , determining a model of the combined
dynamics of modep and modeq is really a problem of modeling the
coupling terms: gpq.xq/ 2 Rn p and gqp.xp/ 2 Rnq . The coupling
dynamics can be modeled by invoking � rst principles or produced
through experimental data. In the latter case, neural network, fuzzy
or neurofuzzy models can be constructed.

3) Determine the region of interest and the partition of the xpq

phase space. A region of interest of the phase space belonging to
xpq is chosen such that it contains the operating points of modep ,
modeq , and any corresponding transitional paths between the two
modes, if they exist. Constraints on xpq can be used to determine
the maximum region of interest. Choosing a large region of interest
will generally result in more partitions for each state of xpq to meet
a desired cell resolution; and more partitions for each state of xpq

will lead to more cells in the phase space,which will lead to a longer
time to perform the phase space simulation. However, choosing a
small region of interest increases the chance of excluding possible
paths between modep and modeq . Therefore, the region of interest
should be determined on the basis of the system’s dynamics. The
region of interest of the phase space is described by the following
inequality:

.xpq ;min/i < .xpq /i < .xpq ;max/i ; for i D 1; : : : ; n p

where .xpq /i is the i th state of xpq I .xpq;min/i and .xpq;max/i de-
note the minimum and maximum values of .xpq/i , respectively.The

phase space is partitioned to have a desired cell resolution such that
a tolerancespeci� cation is met and the equilibriumpoints of modep

and modeq are in different cells near the center of their respective
cells. The number of cells in the region of interest of xpq is

n pq

i D 1

Ni

4) Determine the region of interest and partition of the blending
weightsphase space.Assuming the outputsof the modep and modeq

controllersare linearlyblended, the modep-to-modeq controllerCpq

will have the following form:

Cpq.¢/ D Kp.xpq/ ¢ up C Kq.xpq/ ¢ uq

where Kp.xpq/ and Kq.xpq/ are the blending matrices; dim.Kp

.xpq// D m pq £ m p and dim.Kq.xpq// D m pq £ mq I m p elements of
Kp.xpq/ are nonzero; and mq elements of Kq.xpq/ are nonzero.
Let k p1; k p2; : : : ; k pm p and kq1; kq2; : : : ; kqmq denote the nonzero
elements of Kp.xpq/ and Kq.xpq/, respectively.These nonzero ele-
mentsofKp.xpq/ andKq.xpq/ arepartitionedintoadmissiblecontrol
inputs having the following ranges:

k pr
min · k pr · k pr

max; for r D 1; : : : ; m p

kqr
min · kqr · kqr

max; for r D 1; : : : ; mq

satisfying the following conditions:
a) If .upq/i is a control input belonging only to modep then

.upq;min/i < k pr ¢ .up/r < .upq;max/i

where .up/r corresponds to .upq/i for some integer r .
b) If .upq/i is a control input belonging only to modeq

.upq;min/i < kqr ¢ .uq /r < .upq;max/i

where .uq /r corresponds to .upq/i for some integer r .
c) If .upq/i is a control input belonging to modep and modeq

.upq;min/i < k pr ¢ .up/r C kqs ¢ .uq /s < .upq;max/i

where .up/r and .uq /s correspondto .upq/i , for some integers r and
s; where .upq/i is the i th element of upq I .upq;min/i and .upq;max/i

denote the minimum and maximum values of .upq/i , respectively;
and .up/r and .uq /s denote the r th and sth elements of up and uq ,
respectively.Let kpq D .k p1; k p2; : : : ; k pm p ; kq1; kq2; : : : ; kqmq /.

The elements of kpq are partitioned heuristically.The number of
cells in the region of interest of kpq is

m p C mq

i D 1

Mi

where Mi is the number of interval divisions along the i th element
of kpq .

5) Determine the nonzero elements of Kp and Kq to transition
from modep to modeq . The PPAA uses the region of interest and
the partition information of xpq and kpq to produce a fuzzy con-
troller that can be used to blend the outputs of the modep and modeq

controllers to obtain a modep -to-modeq transition. The inputs and
outputs of the fuzzy controller are xpq and kpq , respectively.The el-
ements of kpq are determinedby the compositionalrule of inference
and the modi� ed mean-of-maxima defuzzi� er. The fuzzy linguistic
rules for the fuzzy controller have the following form:

IF .xpq/1 is L.xpq /1 and ¢ ¢ ¢ and .xpq /n pq is L .xpq /n pq

THEN .kpq /1 is L .kpq /1 and ¢ ¢ ¢ and .kpq/m p C mq is L.kpq /m p C mq

where .xpq /i and .kpq/ j are fuzzy representationsfor .xpq .t//i and
.kpq.t// j , the elementsof xpq.t/ andkpq.t/, respectively;L.xpq /i and
L .kpq / j are linguistic variables such as “positive large,” “negative
small.”

Therefore, the modep -to-modeq controller will have the form

Cpq.xpq ; up ; uq/ D Kp.xpq/ ¢ up C Kq .xpq / ¢ uq
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where the nonzeroelements of Kp and Kq are determined by a (n pq -
input, .m p C mq/-output) fuzzy controller.

Note that the mode-to-mode transition problem, as formulated,
simpli� es by assuming one nominal initial condition and reference
trajectory. It is possible to extend the approach to the design of
controllersthat takes initialstates in theneighborhoodof thenominal
initialconditionto the speci� ed � nal state.This canbe accomplished
by adapting the blending the gains such that the modep-to-modeq

controllertracksthenominalreferencetrajectoryin the least-squares
sense.

B. Formulation of Fuzzy Logic Controller Robustness
Consider a nonlinear autonomous system that includes the

dynamics of modep , modeq , and their corresponding coupling
dynamics,

Px D f .x; u; ®/; x.t0/ D x0 (1)

where x denotes the n pq -dimensional state vector, ® D ®0 C D ® is
an r-dimensional parameter vector, f is an n pq -dimensional vector
function, u D Cpq.x; ®0/ is the m pq -dimensional input vector gen-
erated by the modep -to-modeq fuzzy controller, ®0 is the nominal
value of ®, and D ® is the vector of small perturbation about the
nominal value.

Let x¤.t/ D x.t ; ®0; x¤
0/ denote the nominal trajectory that

satis� es

Px¤ D f .x¤; u; ®0/; x¤.t0/ D x¤
0

Let x.t/ D x.t ; ®; x0/ denote the perturbed trajectory that satis� es

Px D f .x; u; ®/; x.t0/ D x0

De� ne the error between the nominal and perturbed trajectory as

e.t/ D e.t; ®; x0/

D x.t ; ®; x0/ ¡ x t; ®0; x¤
0

D x.t/ ¡ x¤.t/ (2)

Therefore the error dynamics can be represented as

Pe.t/ D Px.t/ ¡ Px¤.t/

) Pe D f e C x¤; Cpq.x; ®0/; ®; t

¡ f x¤; Cpq x¤; ®0 ; ®0; t

) Pe D g.e; t/; g.0; t/ D 0 (3)

Because x¤.t/ converges asymptotically from the equilibrium of
modep to the equilibriumof modeq , then the stabilityof the nominal
trajectory subjected to small perturbationsof plant parameters and
initial conditionswill be examined. Investigatingthe stabilityof the
nominal trajectory corresponds to the study of the stability of the
trivial solution y.t/ ´ 0 of the following equation:

Py D g.y; t/; g.0; t/ D 0 (4)

The stability envelope of x¤.t/, shown in Fig. 2, denotes the region
about x¤.t/ in which the perturbed trajectories must be constrained
for the closed-loop system to be considered stable. In other words,
the modep-to-modeq fuzzy controller possesses robust stability if
the perturbed trajectories remain close to the nominal trajectory, as
de� ned by the stability envelope when the system is subjected to
small perturbations of plant parameters and initial conditions. The
boundaries of the stability envelope satisfy the following relation-
ship:

xmax.t/ D x¤.t/ C D x > x¤.t/ > x¤.t/ ¡ D x D xmin.t/ (5)

where D x is a positive vector. Therefore, the error between the
nominal and perturbed trajectory satis� es the following condition:

jei .t/j · . D x/i ; for i D 1; : : : ; n pq (6)

Fig. 2 Stability envelope of modep-to-modeq trajectory.

De� nition 1. The trivial solution y.t/ ´ 0 of Eq. (4) is called
Lyapunov stable if for any " > 0 there exists a ±."; t0/ > 0 such
that the inequality jy.t/j · " is satis� ed for any t ¸ t0 whenever
jy.t0/j · ±."; t0/.

De� nition 2. The trivial solution y.t/ D 0 of Eq. (4) is called uni-
formly stablewith respect to t0 if for any " > 0 there exists a ±."/ > 0
independent of t0 such that the inequality jy.t/j · " is satis� ed for
any t ¸ t0 whenever jy.t0/j · ±."/.

De� nition 3. A continuous function !: RC ! RC is said to be of
class K (or to belong to class K), if 1) !.0/ D 0, 2) !.p/ > 0, and
8p > 0, and 3) ! is nondecreasing.

Theorem 1. Assume that, in a neighborhood of y.t/ ´ 0 in
Eq. (4), there exists a scalar function V .y; t/ with continuous
� rst-order derivatives and a class-K function w1 such that 8y 6D 0:
1) V .y; t/ ¸ w1.kyk/ > 0, and 2) PV .y; t/ · 0, then y.t/ D 0 is
Lyapunov stable. If, furthermore, there is a scalar class-K function
w2 such that V .y; t/ · w2.kyk/, then y.t/ D 0 is uniformly stable.

Proof. The proof of this theorem can be found in Ref. 8.
De� nition 4. De� ne a unit parameter perturbation as

1®i=®i D kii 2 R; i D 1; : : : ; r (7)

De� nition 5. The fuzzy sensitivity of the real output function,
e.x; ®; t/, with respect to the real parameters ®i , i D 1; : : : ; r , is
expressed by1

Se
® D 1 ¡ ¹1e

1 ¡ w1¹1®1 ¡ w2¹1®2 ¡ ¢ ¢ ¢ ¡ wr ¹1®r

;

r

i D 1

wi D 1

wi 2 [0; 1] (8)

where ¹ are membership functions of the deviations and wi are
weights that are heuristically chosen to signify the importance of a
parameter.

De� nition 6. The single parameter fuzzy sensitivity expression
with parameter ®i giving rise to a change in e j is written as

S
e j
®i D

1 ¡ ¹1e j

1 ¡ ¹1®i

(9)

The sensitivityS
e j
®i is calculatedby � xing the otherparameters® j; j 6D i

to their nominal values. In the following development of robust
stability, the single parameter expression will be used for fuzzy
sensitivity.

C. Main Robust Stability Results
Theorem 2. Let the fuzzy controller Cpq.x; ®0/ transition from

modep to modeq stably for the system given in Eq. (1) having
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nominal parameters. The fuzzy controller Cpq.x; ®0/ is robust
with respect to parametric uncertainty if the following condition
is satis� ed:

P D

&

666666666666$

r

j D 1

Se1
® j

k j j 0 ¢ ¢ ¢ 0

0
r

j D 1

Se2
® j

k j j ¢ ¢ ¢ 0

:::
:::

: : :
:::

0 0 ¢ ¢ ¢
r

j D 1

S
en pq
® j k j j

’

777777777777%

· 0

8t ¸ t0 (10)

Proof. Becausewe want the perturbedtrajectoriesto remain close
to the nominal trajectory when subjected to parameter and initial
conditionvariations,then the performancemeasure should incorpo-
rate information about the error between the trajectories.Let us de-
� ne the performancemeasureas a lower-boundedfunctiongiven by

V .e; t/ D 1
2 eT e (11)

where e.t/ is de� ned in Eq. (2).
From a stability standpoint,Cpq .x; ®0/ is required to ensure that

8e 6D 0:

V .e; t/ ¸ w1.kek/ > 0; PV .e; t/ · 0

where w1.kek/ is a class-K function. Let w1.kek/ D 1
4
fkekg2 D

1
4
eT e, which is a class-K function. Because w1.kek/ is a class-K

function and V .e; t/ ¸ w1.kek/ > 0 .8e 6D 0/, then the nominal tra-
jectory is stable if the following condition is met:

PV .e; t/ · 0; 8t ¸ t0; or dV .e; t/ · 0; 8t ¸ t0

Therefore,

dV .e; t/ D dV .e/ D eT de; de D

&

66666$

@e1

@®1
¢ ¢ ¢ @e1

@®r
:::

: : :
:::

@en pq

@®1
¢ ¢ ¢

@en pq

@®r

’

77777%
d®

(12)

Consider the most general notion of sensitivity from a control-
theoreticviewpoint.The sensitivityof an observedvariable³ , which
is a function of the parameter®, is de� ned as the percentagechange
in the quantity³ dividedby thepercentagechangein the parameter®
that caused the change in ³ . The most commonly used expression is

S³
® D @³=³

@®=®
(13)

Therefore, the sensitivity of e j with respect to the parameter ®i is

S
e j
®i D

@e j=e j

@®i=®i
D

@e j

@®i

®i

e j

(14)

The sensitivity expression in Eq. (14), therefore, will be approxi-
mated by the single parameter fuzzy sensitivity expressiongiven in
Eq. (9).

Comparing Eqs. (9) and (14) gives

S
e j
®i D @e j =e j

@®i =®i

¼
1 ¡ ¹1e j

1 ¡ ¹1®i

(15)

Now, the partial derivatives in Eq. (12) can be approximated by

@e j

@®i
¼

1 ¡ ¹1e j

1 ¡ ¹1®i

e j

®i

(16)

Using Eqs. (12–16), the expression for dV .e; t/ becomes

dV .e; t/ D eT

&

66$

.e1=®1/Se1
®1

¢ ¢ ¢ .e1=®r /Se1
®r

:::
: : :

:::

enpq ®1 S
en pq
®1 ¢ ¢ ¢ en pq ®r S

en pq
®r

’

77% d® (17)

dV .e; t/ D eT

&

66$

e1k11 Se1
®1

C ¢ ¢ ¢ C e1krr Se1
®r

:::

en pq k11S
en pq
®1 C ¢ ¢ ¢ C en pq krr S

en pq
®r

’

77% (18)

dV .e; t/ D eT

&

666666666666$

r

j D 1

Se1
® j

k j j 0 ¢ ¢ ¢ 0

0
r

j D 1

Se2
® j

k j j ¢ ¢ ¢ 0

:::
:::

: : :
:::

0 0 ¢ ¢ ¢
r

j D 1

S
en pq
® j k j j

’

777777777777%

e

D eT Pe (19)

Then

P · 0 ) dV .e; t/ · 0

Theorem 3. Let the fuzzy controller Cpq.x; ®0/ transition from
modep to modeq stably for the system given in Eq. (1) having nomi-
nal initial condition.The fuzzy controllerCpq .x; ®0/ is robust with
respect to perturbed initial conditions if the following condition is
satis� ed:

P D

&

666666666666$

n pq

j D 1

Se1
.x0 / j

Nk j j 0 ¢ ¢ ¢ 0

0
n pq

j D 1

Se2
.x0/ j

Nk j j ¢ ¢ ¢ 0

:::
:::

: : :
:::

0 0 ¢ ¢ ¢
n pq

j D 1

S
en pq

.x0 / j
Nk j j

’

777777777777%

· 0

8t ¸ t0 (20)

where Nk j j D .1x0/ j =.x0/ j and 1x0 D x0 ¡ x¤
0 .

Proof. Use the proof of Theorem 2, although substituting x0 for
®, 1x0 for D ®, and Nk j j for k j j .

D. Determine Worst-Case dV
The objective is to � nd dV .e; t/ that corresponds to the worst-

case trajectoryerrors.The worst-casetrajectoryerrors is determined
by maximizing a function of these errors in the space parameter
perturbations. The worst-case dV .e; t/ can be determined several
ways:

1) Find dVworst case such that h.e/ D eT .t f /e.t f / is maximized, i.e.,
� nd dVworst case such that the steady-state errors from the nominal
trajectory are maximized.

2) Find dVworst case such that

h.e/ D
t f

t0

eT .t/e.t/ dt

is maximized, i.e., � nd dVworst case such that the trajectory error in
the time interval [t0; t f ] is a maximum.
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3) Find dVworst case such that h.e/ D supt feT .t/e.t/g is maximized,
i.e., � nd dVworst case such that the magnitude of trajectory error is
maximized.

Even if dVworst case is found such that h.e/ is maximized, this does
not tell us how to select the worst-case sensitivities. Without this
maximization, though, it would be dif� cult to determine the worst-
case performancein terms of trajectoryerrors.Key robustnessques-
tions are: 1) How large can k j j be?, 2) How large can Sei

® j be?, and
3) How large can Sei

® j k j j be before the system is destabilized?; i.e.,
before

r

j D 1

Sei
® j

k j j · 0; for i D 1; : : : ; n pq

Note that the preceding discussion is also applicable to the case of
perturbed initial conditions.

E. Measure of Robustness
The measure of the size of the matrix P in Eqs. (10) or (20) is

given by1;2

kPk1 D sup
t

N¾ .P; t/ (21)

where N¾ .P; t/ denotes the maximum singular value of the time-
varying matrix P.

Because the sensitivitiesof the trajectoryerrorsde� ned in Eq. (2)
are incorporated into the matrix P, then the supremum of the max-
imum singular value of P will be used as a measure of robustness.
The fuzzy robustness measure (FRM) is given by

FRM D kPk1 (22)

The feasible universe of discourse for the fuzzy robustness mea-
sure is considered to be [FRMmin, FRMmax]. The computed value
of FRM will have membership in this interval that can be described
linguisticallyin terms of fuzzy sets. The smaller the value of FRM,
the more robust is the closed-loop system.

F. Robust Analysis
De� nition 7. Worst-case sensitivity is such that a “small” pa-

rameter perturbation leads to the largest change in the trajec-
tory error. In other words, .1 ¡ ¹1®i / ! 0 such that .1 ¡
¹1e j / ! 1.

De� nition 8. Ideal-case sensitivity is such that the trajectory
error is unaffected by parameter perturbations. In other words,
.1 ¡ ¹1e j /=.1 ¡ ¹1®i / ¼ 0.

The robust analysis is performed to identify the least robust per-
turbationover a spaceof possibleparametervariations.The analysis
procedure is summarized as follows.

1) Determine the nominal trajectory x¤.t/ by simulating the
closed-loop system using the nominal parameter values.

2) Specify the membership functions ¹1®i and ¹1e j of the de-
viations for 1®i and 1e j . Figure 3 shows the fuzzy sets for small
parameter perturbationsand trajectory deviations from the nominal
trajectory.

3) Calculate S
e j
®i in the following way:

a) Determine the perturbed trajectory x.t/ by simulating the
closed-loop system using the parameter vector ® D ®0 C D ®,
where 1®i 6D 0 and 1® j; j 6D i D 0.

b) Given ¹1®i and ¹1e j , calculate S
e j
®i using Eq. (2) and De� ni-

tion 6.

Fig. 3 Fuzzy set for small perturbations and trajectory deviations.

Fig. 4 Fuzzy robust measure. VR = very robust; R = robust; QR =
quite robust; NR = not robust; NQR = not quite robust.

4) Calculate FRMmin, FRMmax, and hmax . The FRMmin and
FRMmax correspond to calculating FRM assuming worst-case and
ideal-case sensitivity, respectively.The value hmax is chosen by the
designer and designates the value of h.e/ beyond which trajectory
errors are not acceptable.Figure 4 shows the fuzzy sets for linguistic
values of “very robust,” “robust,” “quite robust,” “not quite robust,”
and “not robust.”

5) Determine FRM¤
max and dVworst case. The FRM¤

max is the maxi-
mum value of FRM determined over the space of parameter varia-
tions. The performance index dVworst case is selected such that h.e/
is maximized over the space of parameter variations. The FRM¤

max
and h¤

max are the maximum value of FRM and h.e/ determined over
the space of parameter variations. A linguistic value is assigned to
FRM¤

max from Fig. 4, while the h¤
max is compared with hmax. Note

that FRM and h.e/ are calculated using e.t/ D x.t/ ¡ x¤.t/, where
x.t/ is determined by simulating the closed-loop system using the
parameter vector ® D ®0 C D ®, 1®i 6D 0, for i D 1; : : : ; r .

6) Determine the least-robust perturbation by maximizing the
following performance criteria:

¸1 ¢ h.e/ C ¸2 ¢ FRM; ¸i 2 [0; 1]; ¸1 C ¸2 D 1

where the weights ¸i are chosen heuristically and the function h.e/
is selected to be either

eT .t f /e.t f /;

t f

t0

eT .t/e.t/ dt or sup
t

feT .t/e.t/g

The preceding robust analysis procedure is also applicable to the
case of perturbed initial conditions.

III. Example: Hover to FF Fuzzy Controller
A. Parametric Model of Helicopter’s Forward Dynamics

The proposed approach is used to analyze the robustness of the
hover to FF transition controller for the following model represent-
ing the longitudinal channel dynamics of a small-scale helicopter
constrained to have no vertical motion; only longitudinaland pitch
rotation motions are allowed:

X D Xhov ¢ ¹hov C XFF ¢ ¹FF; M D Mhov ¢ ¹hov C MFF ¢ ¹FF

Rx D
X

m ¢ cos.µ/
¡ g ¢ tan.µ/; Rµ D

M

Iy

Xhov D X trim;hov C X Px;hov. Px ¡ Pxtrim;hov/ C X Pµ ;hov. Pµ ¡ Pµtrim;hov/

C X±e ;hov.±e ¡ ±e;trim;hov/

XFF D X trim;FF C X Px;FF. Px ¡ Pxtrim;FF/ C X Pµ ;FF. Pµ ¡ Pµtrim;FF/

C X±e ;FF.±e ¡ ±e;trim;FF/

Mhov D Mtrim;hov C M Px;hov. Px ¡ Pxtrim;hov/
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Table 1 Aerodynamic parameters and the corresponding trim values

Parameter Value Description

X Px;hov ¡0.0400 Partial derivative of X with respect to Px at hover
X Pµ ;hov 1.1675 Partial derivative of X with respect to Pµ at hover
X±e ;hov 21.2482 Partial derivative of X with respect to ±e at hover
Xtrim;hov ¡0.1011 Trim value of aerodynamic force X at hover
X Px;FF ¡0.0019 Partial derivative of X with respect to Px at FF
X Pµ ;FF 1.2018 Partial derivative of X with respect to Pµ at FF
X±e ;FF 26.9988 Partial derivative of X with respect to ±e at FF
Xtrim;FF ¡0.5411 Trim value of aerodynamic force X at FF
M Px;hov 0.0000 Partial derivative of M with respect to Px at hover
M Pµ ;hov ¡1.8769 Partial derivative of M with respect to Pµ at hover
M±e ;hov ¡43.4060 Partial derivative of M with respect to ±e at hover
Mtrim;hov 0.0000 Trim value of aerodynamic moment M at hover
M Px;FF 0.0000 Partial derivative of M with respect to Px at FF
M Pµ ;FF ¡1.6336 Partial derivative of M with respect to Pµ at FF
M±e ;FF ¡37.4916 Partial derivative of M with respect to ±e at FF
Mtrim;FF 0.0000 Trim value of aerodynamic moment M at FF
Pxtrim;hov 0.0000 Trim value of forward velocity Px at hover
Pµtrim;hov 0.0000 Trim value of pitch angle velocity Pµ at hover
±e;trim;hov ¡0.0021 Trim value of longitudinal input ±e at hover
Pxtrim;FF 17.0000 Trim value of forward velocity Px at FF
Pµtrim;FF 0.0000 Trim value of pitch angle velocity Pµ at FF
±e;trim;FF ¡0.0421 Trim value of longitudinal input ±e at FF
µtrim;hov ¡0.0037 Trim value of pitch angle µ at hover
µtrim;FF ¡0.0198 Trim value of pitch angle µ at FF
m 0.8488 Mass of the helicopter
IY 0.7656 Moment of inertia along y axis

Fig. 5 Side view of helicopter’s axis system.

C M Pµ;hov. Pµ ¡ Pµtrim;hov/ C M±e ;hov.±e ¡ ±e;trim;hov/

MFF D Mtrim;FF C M Px ;FF. Px ¡ Pxtrim;FF/ C M Pµ;FF. Pµ ¡ Pµtrim;FF/

C M±e;FF.±e ¡ ±e;trim;FF/

¹hov D

1; if j Px j < 3

0; if j Px ¡ 17j < 3

¡
Px ¡ 14

11
; if 3 · Px · 14

¹FF D

0; if j Px j < 3

1; if j Px ¡ 17j < 3
Px ¡ 3

11
; if 3 · Px · 14

where Rx, Rµ , and ±e represent the forward acceleration (ft/s2), pitch
angle acceleration (rad/s2 ), and longitudinal cyclic input (rad), re-
spectively.The aerodynamicforce along the x axis is representedby
X , and M represents the pitchingmoment about the y axis. Figure 5
shows the axis system of the helicopterwith respect to the side view.
The aerodynamicparameters and correspondingtrim values for the
hover and FF are given in Table 1. These constant values were cal-
culated by a trim analysis program using physical parameters from
a Xcell 300 helicopter in hover and FF. The state vector of the he-
licopter model is [x1 x2 x3 x4]T D [ Px Rx µ Pµ]T . It is assumed that
the output vector of the model is the same as the state vector. To

perform a parametric analysis, the model can be transformed into
the following form:

Rx D
X

Q®3c31 ¢ cos.µ/
¡ g ¢ tan.µ/; Rµ D

M

Q®6c61

X D Xhov ¢ ¹hov C XFF ¢ ¹FF; M D Mhov ¢ ¹hov C MFF ¢ ¹FF

Xhov D Q®1.c11 C c121 Pxhov C c131 Pµhov C c141±e;hov/

XFF D Q®2.c21 C c221 PxFF C c231 PµFF C c241±e;FF/

Mhov D Q®4.c41 C c421 Pxhov C c431 Pµhov C c441±e;hov/

MFF D Q®5.c51 C c521 PxFF C c531 PµFF C c541±e;FF/

where the parameters have the following values: Q®1 D 10:00 is the
nominal gain for the hover aerodynamic force; Q®2 D 10:00 is the
nominal gain for the FF aerodynamic force; Q®3 D 10:00 is the nomi-
nal gain for the helicopter’s mass; Q®4 D 10:00 is the nominalgain for
the hover aerodynamic moment; Q®5 D 10:00 is the nominal gain for
the FF aerodynamic moment; and Q®6 D 10:00 is the nominal gain
for the moment of inertia along the y axis. The constant values are

c11 D ¡0:0101; c12 D ¡0:0040; c13 D 0:1168

c14 D 2:1248; c21 D ¡0:0541; c22 D ¡0:0002

c23 D 0:1202; c24 D 2:6999; c31 D 0:0849

c41 D 0:0000; c42 D 0:0000; c43 D ¡0:1877

c44 D ¡4:3406; c51 D 0:0000; c52 D 0:0000

c53 D ¡0:1634; c54 D ¡3:7492; c61 D 0:0766

B. Hover to FF Mode Controller
The followingcontrol law was used for the hover to FF controller:

±e D ±e;hov. Px; µ; Pµ / ¢ Khov. Px; Rx; µ; Pµ/

C ±e;FF. Px; Rx; µ; Pµ/ ¢ KFF. Px; Rx; µ; Pµ/
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Fig. 6 Structure of hover mode controller.

Fig. 7 Structure of FF mode controller.

where ±e;hov.¢/ and ±e;FF.¢/ are fuzzy regulators for the hover and FF
modes. Note that ±e;hov.¢/, ±e;FF.¢/, and ±e are scalar. Figures 6 and 7
show the structure of the hover and FF controllers. The hover and
FF controllers regulate about the operating points

[ Px Rx µ Pµ ]T D [0:0000 0:0000 ¡0:0037 0:0000]T

[ Px Rx µ Pµ ]T D [17:0000 0:0000 ¡0:0198 0:0000]T

respectively. The scalar gains Khov. Px; Rx; µ; Pµ/ and KFF. Px; Rx; µ; Pµ /
are determined via the PPAA such that closed-loop system transi-
tions from

[0:0000 0:0000 ¡0:0037 0:0000]T

to

[17:0000 0:0000 ¡0:0198 0:0000]T

in minimum time with the following constraints:

¡0:3148 · Px · 17:6296; ¡0:5000 · Rx · 2:5000

¡0:1164 · µ · 0:0124; ¡0:2400 · Pµ · 0:2400

¡0:0625 · Khov · 1:0625; ¡0:0625 · KFF · 1:0625

C. Robust Analysis: Simulations
The robust stability of the modehover-to-modeFF fuzzy controller

is studied when Q®3 and Q®6 are perturbed. Because we want dV · 0,
we need to perform a robust analysis where 1 Q®3, 1 Q®6 · 0. Let
® D [®1 ®2]T , where ®1 and ®2 denote the parameters Q®3 and Q®6,
respectively.

Figures 8 and 9 show Px , Rx, µ , and Pµ trajectories with respect to
nominal parameter values. The robust analysis will be performed
such that the perturbed trajectories are within the stability band
represented by the following equation:

je j .t/j · 1x j ; for j D 1; : : : ; 4

where

D x D [1x1 1x2 1x3 1x4]T D [0:50 0:90 0:03 0:15]T

Fig. 8 Plots of Çx and Èx nominal trajectories.

Fig. 9 Plots of µ and Çµ nominal trajectories.
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Fig. 10 Plotsof Çx and Èx trajectory errors for the least-robust operation.

Fig.11 Plotsofµ and Çµ trajectory errors for the least-robust operation.

The parameters for .1®m/1 and .1®m /2 are given next:

[.1®m /1 .1®m/2]T D [1:00 1:00]T

The fuzzy sets in Fig. 3 are represented using cosine membership
functions (cosmf). The cosine membership function has the follow-
ing de� nition:

cosmf.vI c; d/ D
1; if jv ¡ cj > d

0:5¤ cos[¼.v ¡ c/=d] C 0:5; if jv ¡ cj · d

where c is the center and d is the half-width of the membership
function. The membership functions ¹1®1 .v/ D cosmf.vI 0; 1/ and
¹1®2 .v/ D cosmf.vI 0; 1/ are used for 1®1 and 1®2 , respectively.
Likewise, the membership function ¹1e j .v/ D cosmf.vI 0; 1x j / is
used for 1e j .

The sensitivities S
e j
®1 and S

e j
®2 are calculated numerically from

De� nition6 using thecosinemembershipfunctionsde� ned for1®1,
1®2, and 1e j . The values FRMmin and FRMmaxare calculatedin the
following way:

1) Assuming ideal-case sensitivity, S
e j
®1 ¼ 0 implies P ¼ 0. There-

fore, FRMmin D kPk1 ¼ 0.
2) Assuming worst-case sensitivity, S

e j
®i ¼ 1=.1 ¡ ¹1®i / (for

i D 1; 2). The parameter perturbationswith the smallest magnitude
that will be used to calculate S

e j
®i are 1®1 D ¡0:01 and 1®2 D

¡0:01. Therefore, 1 ¡¹1®1 D 1 ¡ cosmf.¡0:01I 0; 1/ D 2:4672£
10¡4 and 1 ¡ ¹1®2 D1 ¡ cosmf.¡0:01I 0; 1/ D 2:4672£ 10¡4 .

Fig. 12 Sensitivity of Çx trajectory error with respect to ®3 and ®6 for
the least-robust operation.

Fig. 13 Sensitivity of Èx trajectory error with respect to ®3 and ®6 for
the least-robust operation.

For that reason, S
e j
®1 k11 ¼ ¡4:05 and S

e j
®1 k22 ¼ ¡4:05, where

k11 D ¡0:001 and k22 D ¡0:001, and

P D

&

66$

¡8:10 0 0 0

0 ¡8:10 0 0

0 0 ¡8:10 0

0 0 0 ¡8:10

’

77%

implies that FRMmax D 8:10. The value hmax is chosen to be

t f

t0

³
1x
4

´T ³
1x
4

´
dt D 0:95

where D x is the maximum allowable deviation from the nominal
trajectory, t0 D 0 and t f D 14 s.

The linguistic values of “very robust,” “robust,” “quite robust,”
“not quite robust,” and “not robust” are assigned to FRM in the fol-
lowing manner: If 0:00· FRM · 1:01 then FRM is “very robust.”
If 1:01 < FRM · 3:04 then FRM is “robust.” If 3:04 < FRM · 5:07
then FRM is “quite robust.” If 5:07 < FRM · 7:10 then FRM is “not
quite robust.” If 7:10 < FRM · 8:10 then FRM is “not robust.” The
optimizations performed in this section are done using MATLAB’s
Optimization Toolbox with a tolerance of 1e¡2 for parameter per-
turbations and 1e¡2 for optimal function values.
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Fig. 14 Sensitivity of µ trajectory error with respect to ®3 and ®6 for
the least-robust operation.

Fig. 15 Sensitivity of Çµ trajectory error with respect to ®3 and ®6 for
the least-robust operation.

The values of FRM¤
max and h¤

max are determined to be FRM¤
max D

0:14 at 1®1 D ¡1:00, 1®2 D ¡0:01, and h¤
max D 0:69 at 1®1 D

¡1:00, 1®2 D ¡1:00, where

h.e/ D
t f

t0

eT .t/e.t/ dt

is maximized over the space of parameter perturbations. Because
FRM¤

max has a linguistic value “very robust” and h¤
max < hmax , the

controller exhibits robust performance to the given range of param-
eter variations.

The least-robust perturbation is determined by maximizing the
following performance criteria over the space of parameter pertur-
bations:

¸1

t f

t0

eT .t/e.t/ dt C ¸2 FRM; ¸1 D 0:5; ¸2 D 0:5

The maximum value of

1

2

t f

t0

eT .t/e.t/ dt C 1
2 FRM D 0:40

occurred at 1®1 D ¡1:00, 1®2 D ¡1:00, where

t f

t0

eT .t/e.t/ dt D 0:69

Fig. 16 Plot of Å¾(P; t) for the least-robust operation.

Fig. 17 Plots of dV(t) and the integral of eT (t)e(t) for the least-robust
operation.

and FRM D 0:10. For the least-robustoperation,Figs. 10–17 shows
plots of the 1) trajectory errors, 2) the sensitivity functions of the
trajectory errors with respect to parametric perturbations, 3) the
maximum singular value of matrix P.t/, and 4) dV .e; t/ and

t

t0

eT .t/e.t/ dt

IV. Summary and Conclusions
An approximate method has been developed for analyzing the

robust stability of nonlinear systems controlled using mode-to-
mode fuzzy controllers. The type of stability considered in this
paper is the Lyapunov stability of the nominal mode-to-mode tra-
jectory in the presence of parametric or initial condition variations.
This type of stability was chosen because it was desired to have
the perturbed trajectories remain close to the nominal mode-to-
mode trajectory that is assumed to have stability convergence from
the equilibrium point of the start mode to the equilibrium point
of the target mode of operation. Finally, a fuzzy robust measure
is formulated quantitatively. The proposed method is illustrated
via performing robust analysis of a hover mode to FF mode con-
troller designed for a small-scale helicopter.The worst-case perfor-
mance of the closed-loop system is determined by identifying the
least-robust operation. The robust stability analysis of fuzzy con-
trollers will assist in verifying the controller design and in demon-
strating the controller performance under emergency maneuvering
conditions.
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