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Abstract
This article proposes a new framework to estimate the degradation level in oil and gas pipelines corroded by internal pit-
ting when operational conditions change over time. Despite the fact that the operational conditions of a pipeline change
at various times, this change has not been addressed in the current available pipeline corrosion degradation models. In
this framework, a hierarchical Bayesian method and augmented particle filtering are used for data fusion to address this
issue. This framework is applied on a case study and the results are compared with the estimations of a state of the art
pitting corrosion degradation model.
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Introduction

Although pipelines are the most reliable and econom-
ical mode of transportation of oil and gas in large quan-
tities,1 their failures and maintenance activities can
impose a high cost to industry. In order to avoid unpre-
dicted failures and also unnecessary maintenance activi-
ties, having a high confidence estimation of pipeline
degradation due to different potential failure mechan-
isms is critical in pipeline integrity management.

Among different failure mechanisms, corrosion is
especially significant for oil and gas pipelines, and pit-
ting corrosion is of most concern because of the high
pits growth rate.2 According to the available literature,
15% of all transmission pipeline incidents between 1994
and 2004 in the United States3 and 58% of oil and gas
pipeline failure in Alberta, Canada, were due to internal
corrosion.4 Furthermore, 90% of corrosion failures of
transmission pipelines in the United States between
1970 and 1984 were due to localized corrosion.4

Therefore, investigation of internal localized corrosion
is an essential task in pipeline integrity management.

While there has been significant progress in under-
standing uniform corrosion, localized corrosion is still
not well understood.5 Internal pitting corrosion, as a
localized corrosion mechanism, is a highly stochastic

process which is affected by a large number of depen-
dent and independent parameters.6,7 Some of these
parameters are pH value in the water phase, the water
chemistry, the protective scale, the CO2 partial pressure,
the amount of H2S, the effect of oil wetting, the metal
alloy composition, the temperature, the multi-phase
flow, and the flow rate. In addition, there is temporal
and local heterogeneity in some of these parameters,
and interdependence between them.8 There has been
some progress on development of different pitting corro-
sion degradation models in the literature. We reviewed
some of the leading probabilistic prediction models for
oil and gas pipelines corroded by pitting corrosion and
ranked them based on their comprehensiveness, the
required data, and the level of knowledge that are
required to develop each of those models.8 To the best
of authors’ knowledge, the available degradation models
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for internal pitting corrosion of oil and gas pipelines have
been developed based on the assumption that all pits are
under the same operational conditions for the operating
life of the pipelines.9,10,11 However, operational condi-
tions of a pipeline can change due to changing nature of
the field, flow reversal, product change, or conversion to
service.12 For example, a pipeline that was constructed in
1953 to deliver crude oil, was converted to natural gas
service in 2002 in Austin, TX, USA.13 Another example
for conversion to service is the use of the current natural
gas pipelines to deliver hydrogen across the United
States, which is in the feasibility study phase.14,15 This
option is under investigation in the United Kingdom as
well.16 An example for change in the product is the con-
tinuous change in the product properties within an uncer-
tain range in the natural gas pipelines.17 According to
Pipeline and Hazardous Materials Safety Administration
(PHMSA), changes in operational conditions may impact
various aspects of a pipelines operation, maintenance,
monitoring, integrity management, material compatibil-
ity, and corrosion susceptibility.18 Therefore, the focus of
this article is on developing a hybrid prognostics and
health management (PHM) degradation model for inter-
nal pitting corrosion in pipelines when operational condi-
tions change over time. This model provides the main
input (i.e. estimated degradation level) for condition-
based maintenance optimization of the pipeline.

The rest of this article is organized as following. In
the next section, related works, approach, and contri-
butions are discussed. Two Bayesian inference methods
that are used in this framework are explained after-
ward. Then, the problem is defined and the proposed
framework is explained by applying that on a case
study. The ‘‘Results’’ section is dedicated to discuss the
results, and ‘‘Conclusion’’ is the last section of this arti-
cle. The description of the used symbols in this article
are given in Table 1.

Related work, approach, and contributions

The integrity management of piggable pipelines is com-
monly performed using in-line inspection data that are
obtained by utilizing a non-destructive tool (e.g. mag-
netic flux leakage (MFL) or ultrasonic test (UT)).19

Maes et al.11 proposed a hierarchical Bayesian (HB)
model based on a gamma process to project pit growth
in piggable pipelines. They considered four types of
uncertainty in modeling: epistemic uncertainty, spatial
heterogeneity, temporal variation, and measurement
errors.11 Zhang and Zhou10 used Maes model to esti-
mate maximum pit depth* for a gas pipeline in Alberta,

Canada. They showed that for 90% of the 62 pits, the
absolute difference between the predicted depths and
the field measured depths are less than or equal to
10% of the pipe wall thickness (PWT). Zhang et al.21

extended Maes model by assuming pits’ depth growth
follow an inverse Gaussian process instead of a
gamma process. By applying this new approach, on
the same in-line inspection (ILI) data set in,10 they
showed that the new results are essentially equivalent
to those based on a gamma process. In another work,
Zhang and Zhou22 again extended the Maes model
using a Bayesian dynamic linear model instead of a
gamma process. In this case, they showed that the
absolute difference between predicted depth and the
corresponding field measurement is less than or equal
to 10% of the PWT for about 92% of the pits. To the
best knowledge of the authors, the family of HB mod-
els are the state of the art degradation models for pig-
gable pipelines.

In contrast to the above-mentioned family of mod-
els, there is another approach that is applicable for
non-piggable pipelines. In this family of models, a gen-
eric degradation model is developed for all pits by cor-
relating the maximum pit depth with the operational
parameters. One of the most comprehensive internal
pitting corrosion degradation model that has been
developed based on this approach, is proposed by
Ossai et al.23 This model correlated 11 operational
parameters with the maximum pit depth, by perform-
ing a nonlinear regression analysis. Ossai model was
developed using 10 years of recorded pit depth data
from UT, and operating parameters data that were
obtained via routine quality control procedures. The
Ossai model is explained in more detail in ‘‘Synthetic
data generation procedure.’’

These two families of models are hybrid PHM
models that combine inspection and measurement
data with Physics of Failure (PoF) of the pitting cor-
rosion process, by relying on this well-accepted
assumption that maximum depth of a pit follows a
power function with a positive exponent less than
one.2,24 The HB models rely more heavily on the
inspection data, because in these approaches specific
inspection data were available for each individual pit.
In contrast, in the generic models, the PoF aspect is
emphasized by taking into account the different cov-
ariates in degradation modeling. However, the data
are not pit-specific in this family of models. One con-
tribution of this article is to propose a hybrid frame-
work that has the advantages of both approaches
described above, by considering both specific ILI data
of each pit and also the effect of operational para-
meters on PoF in degradation modeling.

Another contribution of this work, as mentioned
above, is to consider changes in operational conditions

* (estimation of maximum (vs mean, etc.) pit depth is the
main concern in pitting corrosion literature because the
deepest pits are the first that cause leaks)20
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in pitting corrosion degradation modeling. Considering
change in degradation rate in condition-based mainte-
nance optimization is addressed by Grall and
Fouladirad25 by using online inspection data for one
component/item. However, in the case of long pipe-
lines, it is not feasible to install online sensors on all
pits to detect change in their degradation rates in order
to consider that in maintenance optimization. This arti-
cle proposes a novel framework to monitor change in
degradation rate (due to change in operational condi-
tions) in the reference pit, and then make a logical and
reliable inference about the change in the degradation
rate and degradation level of other active pits along the
pipeline.

Bayesian inference methods

The proposed framework is founded on two Bayesian
inference techniques: augmented particle filtering
(APF) and HB methods. APF is used to fuse online
inspection (OLI) data and estimate the degradation
level of the reference pit. A HB method is used to fuse
ILI data and estimate degradation level of ILI pits at
ILI times. These two methods are discussed in the fol-
lowing sections.

APF

Particle filtering (PF) or sequential Monte Carlo
method is a technique that uses recursive Bayesian

Table 1. Nomenclature.

Symbol Description Unit

SI Similarity index
ILI In-line inspection
OLI Online inspection
PF Particle filtering
APF Augmented particle filtering
HB-NHGP Hierarchical Bayesian based on a non-homogeneous gamma process
PWT Pipe wall thickness
EMPD Estimated maximum pit depth
RUL Remaining useful life
PHM Prognostics and health management
PM-SD Process model standard deviation in APF
PoF Physics of Failure
Metric R Root mean squared error between actual and predicted maximum depth of all pits
Metric N The percentage of all pits that their predicted depths fall within the 610% of their actual maximum depth
a Constant biased error
b Proportional biased error
i Pit index
j Time index
p Particle index
P Number of particles
k Coefficient of power law model mm
t Time year
t Time year
t0 Pit initiation time year
T Time at which operational conditions change year
d Maximum pit depth mm
u Vector of model parameters
n Exponent of power law model
Vq qth operational parameter

Regression coefficient for the qth operational parameter
g0 The intercept of the regression model
Q No. of operational parameters
y Measured maximum pit depth mm
E Random scattering error mm
m No. of in-line inspected pits
n No. of ILI operations
Pit M The online inspected pit
h Kernel smoothing factor
Actual depth Synthetic actual depth of a pit without measurement error
Measured depth Synthetic measured depth of a pit
Estimated depth An estimation of the synthetic actual depth of a pit
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approaches to estimate the state of a dynamic system
that changes over time using a sequence of noisy mea-
surements made on the system.26 Because of its flexible
and powerful diagnostic and prognostic features for
nonlinear and non-Gaussian systems, application of PF
in reliability engineering has increased rapidly in the
recent years.27 PF is able to process data online as it
arrives, which is crucial both from the point of view of
storage costs and also for rapid adaptation to changing
data characteristics.26 This makes it a proper choice for
modeling degradation processes with change in degra-
dation rate.

In order to make inference about a dynamic system
using particle filtering, at least two models are required;
the process model (equation (1)) that describes the evo-
lution of the state with time, and the measurement
model (equation (2)) that relates the noisy measure-
ments to the state of the system26

dj = fj(dj�1,Vj�1)! Pr(djjdj�1) ð1Þ

where d represents the state of the system (in this article
maximum pit depth), f represents a possibly nonlinear
process function, j represents the time index, and V is
an i.i.d process noise

yj = gj(dj,vj)! Pr(yjjdj) ð2Þ

where y represents the noisy measurement of the state
of the system (in this article measured maximum pit
depth), g is a possible nonlinear measurement function,
and v is an i.i.d measurement noise sequence.

In order to infer the posterior density function (pdf)
of the state of the system given previous noisy measure-
ments, Bayes’ rule can be used according to equation
(3)

Pr(djjy1:j) =
Pr(yjjdj)Pr(djjy1:j�1)

Pr(yjjy1:j�1)

}Pr(yjjdj)Pr(djjy1:j�1)

ð3Þ

In this equation Pr(yjjdj) can be calculated using
equation (2) and the prior pdf of the state of the sys-
tem, Pr(djjy1:j�1), can be calculated using Chapman–
Kolmogorov equation

Pr(djjy1:j�1) =

ð
Pr(djjdj�1, y1:j�1)Pr(dj�1jy1:j�1)dxj�1

ð4Þ

Assuming that the measurements are conditionally
independent and also assuming first-order Markovian
property, equation (4) can be simplified as equation (5)

Pr(djjy1:j�1) =

ð
Pr(djjdj�1)Pr(dj�1jy1:j�1)dxj�1 ð5Þ

In this integral, the first term can be calculated using
equation (1) and the second term can be calculated
recursively forward in time by assuming that the pdf of
the initial condition of the state of the system, Pr(d0), is
known. The denominator in equation (3) is a normaliz-
ing factor which is independent of the state of the sys-
tem and usually does not have an analytical closed
form solution, and numerical solution is usually com-
putationally expensive. In PF, there is no need to calcu-
late the denominator.

Except for special cases (i.e. linear Gaussian state
space models), it is not possible to evaluate the poster-
ior distribution in equation (3) analytically. The key
idea in PF is to approximate the pdf of the state of the
system with a discrete weighted distribution of some
random samples (i.e. particles) (equation (6))

Pr(djjy1:j) ’
XP

p = 1

w
p
j d(dj � d

p
j ) ð6Þ

In this equation, d represents the Dirac’s delta func-
tion, w

p
j represents the normalized weight of the pth

particle at the jth time step, and P is the number of par-
ticles. In order to perform PF, P number of samples or
particles are generated from initial pdf of the state of
the system and then at each time step, those particles
are evolved using the process model (prediction step).
Subsequently, the measurements corresponding to that
time step will be used to update the assigned weight to
each particle (updating step).26 Those weights are cho-
sen using the principle of importance sampling.28,29

The concept of importance sampling is as following.
Suppose e(d)}r(d) is a probability density function that
is difficult to draw samples from (e.g. posterior distri-
bution of nonlinear non-Gaussian systems in Bayes’
rule in equation (3)). But, we can easily sample from
another pdf, s(d) (e.g. a normal distribution). In this
case a weighted approximation of e(d) can be obtained
using equation (7)

e(d)’
XP

p = 1

wpd(d � dp) ð7Þ

where wp}r(dp)=s(dp) is the normalized weight of the
pth sample (i.e. particle).

Using this concept, it can simply be proven26 that
the sequence of the assigned weight of particles at each
time can be obtained by equation (8)

w
p
j }w

p
j�1

Pr(yjjdp
j )Pr(dp

j jd
p
j�1)

G(dp
j jd

p
j�1, yj)

ð8Þ

Using this equation in equation (6), the posterior
distribution of the state of the system can be
approximated.

1078 Structural Health Monitoring 19(4)



In the standard PF, it is assumed that the parameters
of the process model are known. However, for most of
the practical cases, those parameters are unknown, but
the form of the process model is known based on the
physics of the process. In that case, APF can be used to
estimate the state of the system and the process model
parameters simultaneously. The process model in APF
is shown in equation (9)

dk = fk(dk�1, uk ,Vk�1)! Pr(dk jdk�1, uk) ð9Þ

where u represents the vector of the state model
parameters.

Kitagawa30 and Liu and West31 used a Gaussian
random walk to define the evolution model for degra-
dation model parameters to enable their adaptation to
new data. It has been identified in Liu and West31 and
Doucet and Tadić32 that using random walk results in
posteriors more diffused than the actual one. To solve
this issue, Liu and West31 proposed a kernel smoothing
approach to reduce the variability in the posterior dis-
tributions. Following that approach, the posterior dis-
tribution of the model parameters can be approximated
by equation (10)31

Pr(ujjy1:j) ’
XP

p = 1

w
p
j N (ujjmp

j , h2zj) ð10Þ

where N(:jm, S) is a multivariate normal density with
mean m (equation (11)) and variance S. In this equa-
tion, h is the kernel smoothing parameter and z is
Monte Carlo posterior variance

m
p
j = hu

p
j + (1� h)�uj ð11Þ

Selection of kernel smoothing factor is also a chal-
lenge in using APF. Based on the prior knowledge, if
the parameters are slowly varying or if they are fixed,
the smoothing factor should be set to a small positive
value (e:g: 0\h\0:2) to reflect the steady property of
the parameters. However, when the parameters are
expected to change significantly over time, the h value
should take a value close to one (e:g: 0:8\h\1) to
incorporate the dynamic behavior of the process.33 The
kernel smoothing factor can also be tuned on a valida-
tion data set and then be applied to the future data.33

In this work, the latter approach is followed. We
considered 70% of the OLI data, up to time T, as the
validation data set and we find the optimum h value
that gives the minimum root mean square error
(RMSE) between the online measurements and the pre-
dictions of APF.

For the case of pitting corrosion, it is well accepted
that maximum depth of a pit follows a power function

with a positive exponent less than one (equation
(12))2,24

dj = k(tj � t0)n ð12Þ

where k and n represent the parameters of pitting corro-
sion degradation model and t0 represents the pit initia-
tion time. The recursive format of this model to be used
in APF analysis is shown in equation (13). In this equa-
tion, a white Gaussian noise with mean zero and stan-
dard deviation PM-SD is assumed as the state model
noise

dj = dj�1 + kn(tj � t0)n�1Dt + N(0, PM� SD) ð13Þ

By considering a general form of the measurement
model for an inspection tool, which includes both the
biased and random scattering errors, the actual and
measured maximum depth of a pit are related accord-
ing to equation (14)

yij = aj + bjdij + N(0, Eij) ð14Þ

where yij represents the measured maximum depth of
ith pit at the jth inspection (j = 1, 2, ..., n), aj and bj are
the constant and the proportional biases of the inspec-
tion tool employed in the jth inspection, and Eij denotes
the SD of normally distributed random scattering error
associated with the measured depth of ith pit at the jth
inspection. Using equation (14) the measurement model
in APF can be derived according to equation (15)

Pr(yijjdij) =
1

2pE2
ij

exp �
yij � aj + bjdi, j

� �� �2

2E2
ij

 !
ð15Þ

Using equations (13) and (14), the pseudocode in
Table 2 has been used in this study for APF analysis.

HB method

Another method that is used in this framework is a HB
method based on a non-homogeneous gamma pro-
cess.11 HB modeling is an appropriate method to make
scientific inference about a population, based on many
individuals, and it is called ‘‘hierarchical’’ because it
uses hierarchical or multistage prior distributions.34

This method is used in this framework to fuse ILI data
of various pits along the pipeline.

Since 1975 when the gamma process was introduced
in the area of reliability engineering,35 it has been used
widely to model degradation processes such as corro-
sion, wear, and fatigue, which involve monotonically
accumulating damage over time in a sequence of tiny
increments.36,37

A gamma process is a continuous-time stochastic
process fX (t), t.0g with the following properties:
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� X (0) = 0 with the probability 1.
� DX = X (t)� X (t);Ga(Da = (a(t)� a(t)),b) for all

0<t\t.
� X (t) has independent increment.

In the above-mentioned properties, Ga represents
pdf of gamma distribution. A random quantity (in this
study maximum pit depth) has a gamma distribution
with shape parameter a.0 and a rate parameter
(inverse of scale parameter) b.0 if its pdf is given by

fX (t)(x) = Ga(x; a,b) =
ba(t)

G(a(t))
xa(t)�1exp(� bx) ð16Þ

where G(:) denotes the gamma function. The expecta-
tion and variance of the gamma process are given in
equations (17) and (18), respectively

E(X (t)) =
a(t)

b
ð17Þ

Var(X (t)) =
a(t)

b2
ð18Þ

According to equation (17), the shape parameter of a
gamma process reflects the average trend of the random
quantity as a function of time. Therefore, by selecting
an appropriate form for the shape parameter of a
gamma process, it can model degradation processes
with increasing, decreasing, or constant degradation
rates. For pitting corrosion process, as it was mentioned
previously, a well-accepted format of its degradation

model is shown in equation (12). Therefore, in that
case, the shape parameter of a gamma process is corre-
lated with the degradation model parameters according
to equation (19)

aj = k0(tj � t0)n0 ð19Þ

Based on this assumption, the increments in degra-
dation level follow a gamma distribution given in equa-
tion (20)

Ddij = dij � dij�1;Ga(Daij = (k0((tj � t0)n0 � (tj�1 � t0)n0),bi)

ð20Þ

When new measurements are available at each
inspection time, the posterior distribution of the depth
increment of each pit will be updated using equation
(21)

Pr(DdijjYi)}Pr(YijDdij)Ga(DdijjDaij,bi) ð21Þ

In this equation, the likelihood of the inspection
data Yi given the increments can be written as shown in
equation (22) by considering the measurement model
that is given in equation (14)

Pr(YijDDi) = (2p)�n=2exp(� 1=2(Yi � (A + BSDDi
))0

3
X�1

E

3(Yi � (A + BSDDi
))) ð22Þ

where Yi = (yi1, yi2, . . . , yin)0, A = (a1, a2, . . . , an)0, B is an
n-by-n diagonal matrix with diagonal elements equal to
bj,
P�1

E is the n-by-n diagonal covariance matrix with
diagonal elements equal to the variance of the random
scattering errors associated with the tool used in inspec-
tion time j, and SDDi

is an n31 vector with the jth ele-
ment equal to

Pj
k = 1 Ddik.

The HB model that is used to estimate these hyper-
parameters (t0, p1, q1, p2, q2, p3, q3) is shown in Figure 1.

Proposed framework

Consider a long piggable oil or gas pipeline, for which
n ILI data sets are available for m number of active pits
at times t1, t2, . . . , tn. In addition, an active pit (the ref-
erence pit, pit M) is monitored continuously using an
online inspection tool. This pipeline is in operation
since time t0, which is assumed to be the initiation time
for all pits. The operational conditions are monitored
and measured as part of the routine operating condi-
tion monitoring procedure of the pipelines. The ques-
tion, which is addressed in this article, is how to
estimate the maximum depth of the existing pits at time
tn+ 1 when the operational conditions change at time T,
tn\T\tn + 1, and there is no new ILI data for those pits.

Table 2. Pseudocode for APF.

For p = 1:P

Sample d
p
0 from maximum pit depth prior distribution.

Sample u
p
0 from model parameters prior distributions.

Normal (prior value, 0.1*prior value).
Calculate �u0, var(u0).

Assign particles’ weight: w
p
0 = 1.

End
For j = 1: number of OLI data

kj = (1� h2)0:5kj�1 + (1� (1� h2)0:5)�kj�1

nj = (1� h2)0:5 � nj�1 + (1� (1� h2)0:5)�nj�1

Prediction step

d
p
j = d

p
j�1 + kn(tj � t0)n�1 + rand:N(0, PM� SD)

kj = kj�1 + rand:N(0, h2var(kj�1))

nj = nj�1 + rand:N(0, h2var(nj�1))
Updating step
wi

j = wi
j�1 � Pr(yjjdj, kj, nj)

Normalize the weights
Resample dj, kj, nj

End

APF: augmented particle filtering; OLI: online inspection.
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In order to answer the above-mentioned question,
we propose a data fusion framework that has three
phases that are shown in Figure 2. The required input
data for this framework are shown in the left side of
this figure. In phase I, prior values for the degradation
model parameters and the SD of the state model noise
in APF are estimated for use in phases II and III. In
phase II, a similarity index (SI) between pit i
(i = 1, 2, :::,m) (an ILI pit) and pit M (the reference pit)
is defined. Finally in phase III using that SI, some
dummy observations are generated and used to esti-
mate the maximum depth of each ILI pit at time tn + 1.
These phases are explained in more detail in the next
paragraphs by referring to the steps in Figure 2.

Phase I: estimating the SD of the white noise of APF
process model (PM-SD) and the prior values for
degradation model parameters

In phase I, the SD of the process model white noise in
APF analysis and also the prior values for degradation
model parameters are estimated using the historical data
of operational parameters and corrosion rate of the con-
sidered pipeline or pipelines under similar operational
condition. Practically, operational parameters are mea-
sured by routine monitoring of the pipeline at a limited
number of locations, and it is not feasible to measure
them in all locations. However, valuable information
about the physics of the corrosion failure mechanism
are embedded in those limited data. In this phase, we
propose an approach to use those data to estimate the

noise of process model in PF. In this way, a generic
degradation model (equation (23)) is developed for all
pits using a multivariate nonlinear regression analysis
(Step I-1), to correlate the average of the maximum pits
depth (�d) with the operational parameters (e.g. pressure,
temperature, and pH) and time

�d(t) = f (P, T , pH , :::, t) ð23Þ

This model is then used to simulate realizations of
actual (vs measured) maximum depth growing behavior
for a number of pits (Step I-2). Figure 3 shows an exam-
ple of these realizations. In order to simulate those reali-
zations, at each time interval (Dt), new samples should
be extracted from the pdf of each operational parameter
(from Step In-1) to be inserted in the developed generic
model (equation (23)) to obtain the corresponding pit
depth increment Dd. This depth increment will be used
recursively to simulate those realizations (equation (24))

�d(t) = �d(t � 1) + D�d = �d(t � 1) +
∂f

∂t
(P, T , pH , . . . , t)Dt

ð24Þ

In Step I-3, the SD of depth increments is calculated
for each pit and then the PM-SD is estimated as the
average of those SDs of all pits (equation (25))

PM� SD=
1

m

Xm

i = 1

STD of D�di, j ð25Þ

where j is the time step index and i is the pit index.

Figure 1. Hierarchical Bayesian model based on a non-homogeneous gamma process modified from the approach that is proposed
by Maes et al.11
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In addition, using regression analysis on the OLI
data up to time T (Step In-2), and fitting a power law
function, prior values for the degradation model para-
meters (k, n) are obtained in Step I-4.

Phase II: defining a similarity index
between pit i and pit M

In phase II, a similarity index (SI) is defined (Step II-3)
between each ILI (pit i) and pit M. This SI is defined as
a ratio of the estimated maximum pit depth (EMPD) of
pit i over EMPD of pit M at ILI times (equation (26))

SI(i) =
1

nP

Xn

j = 1

XP

p = 1

djp of pit i by HB�NHGP

djp of pit M by APF
ð26Þ

where n is the number of ILI operations and P is the
number of particles and p is the particle index.

The denominator is an estimation of the maximum
pit depth of the reference pit M and it is obtained by
using APF to fuse the OLI data (Step In-3) of this pit
up to time T. In the denominator, djp is the state of par-
ticle p at the jth ILI. The other inputs for APF analysis
of pit M are the preliminary estimation of k and n (Step
I-4) and the estimated PM-SD (Step I-3) and the char-
acteristics of the OLI tool (Step In-3).

The numerator of this ratio is estimated by fusing
ILI data of all pits, using the HB model based on a
non-homogeneous gamma process (HB-NHGP) that is
explained in the HB method section (Step II-2). Inputs
of this step are ILI data of all pits (Step In-4), and the
characteristics of ILI tools (Step In-5), including biased
and scattering errors of those tools (a, b and E in equa-
tion (14)). The output of Step II-2 is an estimate
of mean and SD of the posterior distribution of EMPD
of each ILI pit. We used Monte Carlo simulation
to extract random samples from that posterior

Figure 2. Flowchart of the proposed framework.
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distribution to have an estimation corresponding to
each particle (djp in the numerator).

Phase III: inferring the degradation level of pit i

Finally in phase III, APF is used to estimate maximum
depth of pit i at time tn + 1 (Step III-2) by fusing the gener-
ated dummy observations for that pit. Those dummy
observations are generated by multiplying the real OLI
data of pit M by the corresponding SI of pit i (Step III-1).
In this phase, h and PM-SD that were estimated for the
OLI pit previously, are used for ILI pits as well, because
these two parameters show the stochasticity of a stochastic
process at each time and OLI and ILI pits are exposing to
the same corrosion environment at each time.

Demonstration of the proposed
framework

In this section, the proposed framework is demon-
strated in a case study. Consider a long oil or gas pipe-
line (e.g. 50 miles length) in operation since 1972. This
pipeline is inspected by ILI, ultrasonic test, in years
2000, 2005, 2010, and 2015. A number of active pits are
detected and monitored at those times. After the first
ILI, an OLI sensor is installed to monitor the degrada-
tion behavior of an active pit (the reference pit) con-
tinuously. The operational conditions change causing
change from moderate to severe corrosion condition in
2015. The goal is to estimate the maximum depth of
ILI pits in 2020 when there is no new ILI data avail-
able, by inferring from OLI data of the reference pit.

Performing phase I of the proposed framework

In practice input data given in Steps In-2, In-4, and In-
6 from Figure 2 should be gathered from ILI and OLI
of the pipeline. These input data can hardly be found
altogether in the existing literature for a pipeline.
Therefore, we used the model that was developed in
Ossai et al.23 as the starting point (output of Step I-1)
to generate synthetic actual (vs measured) depths in
Step I-2. We added random measurement noise to
those synthetic actual depths to generate synthetic ILI
and OLI data for this case study. The characteristics of
the inspection tools that are given in Zhang and
Zhou10 are used in Steps In-3 and In-5. This synthetic
data generation procedure is explained in more detail
as following.

Synthetic data generation procedure. We reviewed different
pitting corrosion degradation models8 and among them
we used a model that was developed by Ossai et al.,23

as the output of Step I-1. This model is chosen because
it has been developed based on the field data (rather
than experimental data) and to the best of our knowl-
edge, that model is the most comprehensive available
generic internal pitting corrosion degradation model in
the literature, that correlates 11 covariates (Table 3)
with the average maximum pit depth over time. This
model has been developed using 10 years of measure-
ment data from 60 X52 pipelines that were used for oil
and gas pipelines in Nigeria. Ossai et al. carried out
multivariate regression modeling to develop this model
which is shown in equation (27)

�d(t) = k(t � t0)n = exp g0 +
XQ

q = 1

gqVq

 !
(t � t0)n ð27Þ

where �d represents the average maximum pit depth, t
represents time of evaluation, k and n are the power
law model parameters, t0 is the pit initiation time (Ossai
et al. assumed that pit initiation time is equal to the
operation initiation time for all pits), g0 represents the
intercept, gq represents the mean value of the regression
coefficient (Table 4) of the qth operational parameter,
Vq represents qth operational parameter (Table 3), and
Q represents the number of operational parameters.

Considering natural log of the mean value of the
operational parameters and the mean value of the esti-
mated regression coefficients in equation (27), the aver-
age maximum pit depth is determined using equation
(28)23

�d(t) = 0:732 t 0:803 ð28Þ

We used this model as the degradation model for
time t.T (T = 2015 in this case study). For time t\T

Figure 3. A realization of simulated actual maximum pit depth.
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(from 1972 to 2015) we used the model that has been
developed for moderate corrosion rate category in
Ossai et al.9 (equation (29))

�d(t) = 0:269 t 0:741 ð29Þ

Since the best fit probability distribution of the
operational parameters for the moderate corrosion rate
category are not given in Ossai et al.,9 we modified the
scale and the shape parameters of the distributions that
are given in Table 3, to have approximately the same
mean and SD that are given for moderate corrosion
rate category in Table 1 of Ossai et al.9 (Ossai et al.9,23

are based on the same data set). These modified values
are given in the last column of Table 3. We used Monte
Carlo simulation to sample from the distributions of
the operational parameters that are given in Table 3.

In addition, the variation in the estimated coeffi-
cients of the degradation model is also taken into
account in the synthetic data generation by considering

the given standard errors. The details are given in the
following pseudocode.

In this pseudocode (Table 5), std.N.rand is a positive
random number generated from the standard normal
distribution. DOF is the degree of freedom of the stu-
dent’s t-distribution which is equal to the number of
samples minus one, minus number of parameters (in
this case 11). According to Ossai et al.,9 number of sam-
ples is more than 70 and 300 for moderate and severe
corrosion rate categories, respectively. Therefore, DOF
is more than 30, for both cases. Which means student’s
t-distribution can be approximated by a standard nor-
mal distribution38 and DOF does not play an important
role in sampling process.

In addition, in order to take into account the tem-
poral variation of corrosion process, we sampled from
the parameters and the coefficients distribution every
0.1 year (Dt in Figure 3). We assumed that there are
100 pits on this pipeline. This pit density is selected
based on examples in the literature (e.g. 62 pits in
80 km,10 554 pits in 129 km,39 1 pit per km).40 These
examples show that the pit density is a small number
and we can reasonably assume that the pits are not
interacting with each other. However, in case of inter-
action between pits, the common practical and conser-
vative approach can be used which is to coalesce the
adjacent pits by following available codes (e.g. DNV
RP-F101)41 and considering the composite pit in this
framework.

Having this synthetic data, an estimation for the SD
of the white noise of the state model in APF is calcu-
lated using equation (25).

In order to generate ILI data (Step In-4 in Figure 2),
the measurement error of ILI tools are added to the
synthetic data according to equation (14). We used
the same equation to consider measurement error in
generating OLI data for the reference pit (Steps In-2
and In-6) using characteristics of the OLI tool. This

Table 4. Parametric estimate for power model development.23

Estimate Coefficients
(gq)

Standard
error

t-stat p-value

Log(T) 0.037 0.083 0.4465 0.6616
Log(Pc) 20.014 0.0373 20.3745 0.7133
Log(pH) 20.8446 0.7418 21.1386 0.2727
Log(S) 20.0033 0.0835 20.0392 0.9692
Log(C) 0.0613 0.0494 1.2388 0.2345
Log(W) 0.042 0.0337 1.2463 0.2318
Log(r) 0.0037 0.0433 0.0857 0.9329
Log(Gs) 20.0467 0.0554 20.8441 0.4119
Log(OL) 20.0002 0.0657 20.0037 0.9971
Log(Wt) 20.0076 0.021 20.3621 0.7223
Log(Pt) 20.0142 0.0488 20.2915 0.7746
Intercept g0 0.44 0.7572 0.5811 0.5698
Log(t) 0.8032 0.0458 17.5346 0

Table 3. Best fit distribution of the operational parameters23 and modified values for moderate corrosion rate category.

Parameters Units Description Best fit
distribution

Original distribution
parameters

Modified distribution
parameters

Scale, shape Scale, shape

T �C Temperature Lognormal 3.72, 0.4052 3.35, 0.12
Pc MPa CO2 partial pressure Weibull 0.1598, 1.2797 0.065, 1.25
pH – pH Extreme value 7.9418, 0.4747 8.2, 16.5
S mgL�1 Sulfate ion Weibull 38.9576, 0.4052 40.5, 1.5

C mgL�1 Chloride ion Weibull 3613.8, 1.3 1413.8, 1.5
W – Water cut Lognormal 21.7178, 1.4696 3.15, 0.8
R Pa Wall shear stress Lognormal 3.447, 0.9151 3.447, 0.9151
Gs m3day�1 Gas production rate Extreme value 335,310, 120,120 335,310, 120,120
OL m3day�1 Oil production rate Weibull 136.33, 2.1145 136.33, 2.1145
Wt m3day�1 Water production rate Weibull 94.9241, 0.4847 94.9241, 0.4847
Pt MPa Operating pressure Extreme value 8.1274, 3.2704 8.1274, 3.2704
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information for each ILI tool and also the OLI tool is
given in Table 6. We assumed that the scattering error
is independent and identically distributed for each pit at
each time and it follows a white noise with mean value
equal to zero and SDs (Ei, j) that are given in Table 6 for
ILI and OLI tools.

Figure 4 shows an example of synthetic actual and
measured maximum pit depth for the OLI and an ILI
pit. This figure shows that the frequency of the OLI
data is higher than the frequency of ILI data. In addi-
tion, the measurement error of OLI tool is smaller than
the measurement error of ILI tool.

Performing phase II of the proposed framework

The assumptions on phase II for this case study are as
following. In Step II-1, 10,000 particles are randomly
selected to approximate the posterior distributions of
the maximum depth and the degradation model para-
meters by APF. In order to select a proper value for h
(kernel smoothing factor), we used 70% of OLI data
up to time T (i.e. 2015 in this case) as the training data
set for APF, and then we found the optimal value of h
which gives the minimum RMSE between the predicted
value by APF and the measured maximum pit depth
by online inspection for the test data set (e.g. remaining
30% of the OLI data). Based on this approach the
selected h value for this case study is 0.01. We also
assumed that degradation model parameters follow

normal distributions with mean values that obtained in
Step I-4 (e.g. we used 0.23 and 0.73 for a seed number)
and SD equal to 0.1 of the corresponding mean value.
In addition, the PM-SD of process model noise is
obtained in Step I-3 (e.g. we used 0.008 for a seed
number).

In Step II-2 the posterior probability distribution of
maximum depth of ILI pits at ILI times are obtained.
In this step, a gamma distribution with shape and scale
parameters equal to ten and one, is selected as the prior
distribution for k. The same assumption has been made
for n and bi with the shape and scale parameters both
equal to one.10 The generated synthetic ILI data of 100
pits are used as the evidence in the HB analysis to
update the posterior distributions of the maximum pit
depth (d). We employed the Markov chain Monte
Carlo simulation technique using the software
OpenBUGS for this analysis. Since this model is a
multi-parameter model, we run two chains, starting at
two different points to decide when convergence to the
posterior distribution has occurred.34 For each chain

Table 5. Pseudocode for synthetic data generation.

For i = 1: m (m, number of pits = 100 in this study)
di, 0 = 0
For j = 1: no. of time steps
Generate Vq, i, j by Monte Carlo simulation (using the
distribution parameters in Table 3).
Generate Vq, i, j = gq (given in Table 4) +

t.inv(std.N.rand (i,j), DOF) 3 corresponding
standard error given in Table 4.

�di, j = n3exp g0 +
PQ

q = 1 gq, i, jVq

� �
3tn�1

D�di, j = �di, j � �di, j�1

End
End

Table 6. Constant (a) and proportional (b) biased error and scattering error of inspection tools.10

First ILI Second ILI Third ILI Fourth ILI OLI

a 2.04% PWT 2.04% PWT 215.28% PWT 210.38% PWT 0
b 0.97 0.97 1.4 1.13 1
E 5.97% PWT 5.97% PWT 9.05% PWT 7.62% PWT 2.0% PWT

ILI: in-line inspection; OLI: online inspection; PWT: pipe wall thickness.

Figure 4. Generated synthetic data for an OLI and an ILI pit.
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100,000 simulation sequences were generated and
10,000 sequences were discarded as the burn in period.
A thinning interval of 10 was selected to reduce the
auto-correlation between the samples.

In Step II-3, by having estimations of maximum
depth of ILI and OLI pits from Steps II-1 and II-2, a
similarity index between each ILI and the reference pit
is defined using equation (26).

Performing phase III of the proposed framework

Finally in Step III-2, the posterior distribution of maxi-
mum depth for each ILI pit at 2020 is estimated by fol-
lowing the given APF pseudocode in Table 2 and using
dummy observations of each in-line inspected pit.
Those dummy observations were generated in Step III-
1 following the procedure that is explained in phase III.
The results of this case study are discussed in the next
section.

Results

In this section, the results of APF analysis in estimation
of maximum depth for the OLI pit is discussed first.
Then, the performance of this framework is validated
by comparing its results with the results of Maes model,
assuming there is no change in operational conditions.
Finally, assuming the operational conditions change at
time T (i.e. 2015 in this case), from moderate to severe
corrosion rate category, we illustrate the effects of con-
sidering this change (and using this framework) on
pipeline degradation level estimation.

Figure 5 shows the estimation of the model para-
meters for the reference pit using APF, when the opera-
tional conditions are the same during pipeline life-cycle.
This figure depicts that approximately 7 years after the
first inspection, when there is enough data to update
the posterior distribution of the model parameters, the
variation of the model parameters reduces and they
converge to constant values that can be used for prog-
nostic purposes.

Figure 6 shows the estimated maximum depth of pit
M using APF. According to this figure, between years
2000 and 2020, that OLI data are available, there is no
significant error in maximum pit depth estimation.
After 2020, as it was expected for particle filtering
method, the estimation error increases over time
because of lack of new inspection data. However, even
after 2020, the actual maximum pit depth is within the
lower and upper bounds of this estimation. Figures 4
and 5 indicate that APF is an appropriate method to
estimate maximum pit depth, when online inspection
data are available.

In order to validate the performance of this frame-
work we defined two metrics. The first validation metric

(Metric R) is the RMSE of maximum pit depth predic-
tion at 2020 (equation (30)). This RMSE should be less
than or almost equal to the RMSE of Maes model. The
second validation metric (Metric N) is the percentage of
all pits that their predicted depths fall within the 610%

Figure 5. Estimated model parameters for the reference pit
using APF for a random seed number.

Figure 6. Estimated maximum depth of the reference pit by
APF.
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of their actual maximum depth. The 610% PWT is
commonly used in the pipeline industry as a confidence
interval for the accuracy of the inspection tools10 and
we modified that in this work as a metric for accuracy

of the prediction. This metric should be greater than or
equal to the one for Maes model. The second metric is
defined because a pipeline is a series system and failure
at each location (i.e. pit) is equal to the failure of the
whole pipeline.42,43 Therefore having smaller RMSE,
does not necessarily mean that the proposed framework
has a better performance. It might be the case that the
estimation errors of a few pits are so small that it causes
decrement in the RMSE, but for the majority of the
pits, the estimation error have increased. Hence, both
of these metrics should be satisfied to conclude that the
performance of the proposed framework is at least as
good as the performance of Maes model when the
operational conditions do not change.

RMSE=
Xm

i = 1

((di � yi)
2)

0:5

m
ð30Þ

Figures 7 and 8 depict two examples of the estimated
maximum depth at 2020 for two ILI pits using this
framework and Maes model. The SI are 0.98 and 1.17
for pit No. 29 and pit No. 53, respectively. According
to Figure 7, for pit No. 29 the estimation error of this
framework is less than the estimation error of Maes
model and according to Figure 8, for pit No. 53 it is
vice versa. In order to quantify the estimation error for
all pits to compare the performance of Maes model
and this framework, the RMSE for both models is cal-
culated. The results for some random seed numbers are
given in Table 7. As shown in this table, the ratio of
the RMSE of this framework over the RMSE of Maes
model is around one for all seed numbers (30 seed
numbers) and the average of that ratio for all seed
numbers is 1.010. With respect to Metric N, on average
for 73.6% and 74.9% of pits, for Maes model and this
framework respectively, the predicted depth is within
the 610% of the actual maximum pit depth. These
metrics indicate that when there is no change in opera-
tional conditions, the performance of this framework is
similar to the performance of Maes model as a vali-
dated state of the art pitting corrosion degradation
model for piggable pipelines.

Relying on the validation results, we used this frame-
work to estimate maximum pit depth at year 2020 when
operational conditions change at 2015. Figures 9 and
10 are two examples of the maximum pit depth estima-
tion for pit No. 50 and pit No. 31, respectively. Pit No.
50 is an example that shows when operational condi-
tions change, using this framework decreases the esti-
mation error, however, the opposite is true for pit No.
31. In order to compare the estimation error for all pits,
Metrics R and N are given in Table 8, for both methods
and for some seed numbers. For example for seed num-
ber 3987, the RMSE of Maes model is 0.519 and for

Figure 7. Estimated maximum depth of pit No. 29 by this
framework and Maes model, without change in operational
conditions.

Figure 8. Estimated maximum depth of pit No. 53 by this
framework and Maes model, without change in operational
conditions.
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this framework it is 0.322. Which means the RMSE of
this framework is 62% of the RMSE of Maes model,
that is a significant improvement in accuracy of maxi-
mum pit depth prediction. As it was mentioned before,

this metric is necessary but not sufficient to conclude
that there is an improvement in degradation level esti-
mation for the whole pipeline. Metric N must also be
considered. As it is shown in Table 8, for seed number

Table 7. Comparing the results in case of no change in operational conditions.

Seed no. Metric R (mm), Maes Metric R (mm), Framework Ratio Metric N (%), Maes Metric N (%), Framework

1653 0.324 0.308 0.951 72 75
251 0.331 0.308 0.951 69 77
2652 0.337 0.293 0.870 61 73
5,412,875 0.352 0.352 1.000 68 67
93 0.291 0.365 1.259 78 69
... ... ... ... ... ...
3987 0.288 0.288 0.997 79 78
Average 0.316 0.318 1.010 74 75

Table 8. Comparing the results in case of considering change in operational conditions.

Seed no. Metric R (mm), Maes Metric R (mm), Framework Ratio Metric N (%), Maes Metric N (%), Framework

1653 0.631 0.344 0.545 31 73
251 0.596 0.407 0.683 40 67
2652 0.599 0.328 0.549 29 73
5,412,875 0.543 0.391 0.718 44 69
93 0.612 0.367 0.601 27 77
... ... ... ... ... ...
3987 0.519 0.322 0.621 42 75
Average 0.556 0.334 0.634 39 75

Figure 9. Estimated maximum depth of pit No. 50 by this
framework and Maes model with change in operational
conditions.

Figure 10. Estimated maximum depth of pit No. 31 by this
framework and Maes model with change in operational
conditions.
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3987, Metric N is 42 for Maes model and it is 75 for
this framework. This means that for seed 3987, out of
100 pits, the Maes model prediction for 42 of them is
within 610% of their actual maximum depth, whereas
our framework is accurate for 75. The average of these
two metrics for all seed numbers are also given in Table
8. According to this table, on average, using this frame-
work the RMSE is 40% lower than the RMSE of using
Maes model when there is change in operational condi-
tions. In addition, for 75.5% of the pits, the predicted
maximum depth is within 610% of their actual maxi-
mum depth for this framework in comparison to 39.4%
of the pits for Maes model. These results show a signifi-
cant improvement in maximum pit depth prediction
that leads to avoiding either unnecessary maintenance
or unpredicted failures.

It is worth noting that when there is a change in
operational conditions, going forward in time, even for
the proposed framework, prediction error increases sig-
nificantly because there is not enough observations to
update and learn the model parameters properly.
However, this error will be reduced by implementing
future OLI and ILI inspections.

Conclusion

In this work, a novel data fusion framework is pro-
posed to develop an internal pitting corrosion degrada-
tion model for oil and gas pipelines when operational
conditions change over time. The change in operational
conditions is taken into account by monitoring the
change in degradation level of an active pit (the refer-
ence pit) and accordingly inferring about the change in
degradation level of other active pits. This framework
consists of three phases. In phase I, historical data of
the considered pipeline or pipelines with similar opera-
tional conditions, are used to develop a generic degra-
dation model for all pits. This model is used to generate
synthetic actual maximum pit depth realizations for a
number of pits. The SD of the white noise that is used
in process model in APF is extracted from these syn-
thetic data. In addition, at this phase, prior values for
degradation model parameters are obtained by per-
forming a nonlinear regression analysis on the OLI
data of the reference pit. In phase II, a similarity index
between each ILI pit and the reference pit is calculated
as a ratio of the estimated maximum depth of the ILI
pit (using a HB method based on a non-homogeneous
gamma process) and the estimated maximum depth of
the reference pit (using APF) at ILI times. In phase III,
dummy online observations are generated for each ILI
pit by multiplying its similarity index with the OLI data
of the reference pit. Then, those dummy observations

are used in APF to estimate the maximum depth of ILI
pits when there is no new ILI data.

The application of this framework is discussed using
this framework on a number of pits and the results are
compared with the results of a state of the art degrada-
tion model (Maes model), that has been validated by
real field data and is available in the literature. Two
metrics are used to compare the results of this frame-
work with the results of the Maes model. The first
metric is Metric R which is the average of RMSE
between actual and predicted maximum pit depth for
all seed numbers. This metric is necessary but not suffi-
cient to compare the performances of this framework
and the Maes model. The reason is that, it is possible
that the estimation errors of a few pits are so small that
it causes decrement in the RMSE, but for the majority
of the pits, the estimation error have increased. We
defined the second metric, Metric N, as the percentage
of all pits that the corresponding predictions are within
610% bounds of their actual maximum depth.

When there is no change in operational conditions,
in terms of Metric R, the results are approximately the
same for the new framework and the Maes model (i.e.
on average of approximately 0.31). In addition, on aver-
age for 73% of all pits, for both this framework and
Maes model, the predicted depth is within the 610%
bounds of their actual maximum pit depth (Metric N).

We also conduct this validation on case study with a
change in operational conditions. Based on the pre-
sented results, by considering change in operational
conditions and using this framework, Metric R, the
RMSE, would be approximately 60% of the RMSE of
the Maes model which is a significant improvement in
maximum pit depth prediction. In addition, in the case
of change in operational conditions, the predicted depth
of 75.5% of pits are within the 610% of their actual
maximum pit depth using this framework. This number
is 39.45% for Maes model. In the other words, this
framework provides 91% improvement with respect to
the number of pits with a high confidence level estima-
tion. These results show that when there is a change in
operational conditions, using the proposed framework
resulted in decrease in the prediction error for the
majority of the pits. These improvements enable avoid-
ing either unnecessary maintenance or unpredicted
failures.

In the next step of this research, we will use the
results of this article to estimate the probability of
occurrence of different failure modes (i.e. small leak,
large leak, and rupture) in a pipeline segment and then
define an optimal maintenance policy which takes into
account the cost of each failure mode and also the cost
of different maintenance actions (i.e. do nothing, sleev-
ing, and replacement). That optimal policy will include
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the optimal maintenance action and time for each seg-
ment and also the optimal next ILI time for the whole
pipeline.

Lack of the real-field corrosion inspection data is a
big challenge in PHM of the oil and gas pipelines.
Hence, it is highly recommended that oil and gas pipe-
lines’ owners and pipeline-operating companies collect
the operational conditions and inspection data and
make them available in the public domain to make it
possible for the researchers to validate their new corro-
sion degradation models that finally leads to the
decrease in the number of unexpected failures and
unnecessary maintenance.
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