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A B S T R A C T

This paper presents a novel algorithm to develop a population-based pitting corrosion degradation model for
piggable oil and gas pipelines. The algorithm is designed to estimate and predict the distribution of actual depth
of existing pits on a pipeline segment, given two or more sets of in-line inspection data that have uncertainty
in size and number of the detected pits. This algorithm eliminates the need for a defect-matching procedure
for those pits that are not critical, that is required in developing defect-based pitting corrosion degradation
models. A hierarchical Bayesian model based on a non-homogeneous gamma process is developed to fuse the
uncertain in-line inspection data and physics of failure knowledge of pitting corrosion process. Measurement
error (ME), probability of detection (POD), and probability of false call (POFC) are addressed in the developed
algorithm. The application of the developed algorithm is demonstrated by implementing it on a simulated case
study and the results are compared with the simulated data from a generic degradation model that is available
in the literature. Results indicate that this algorithm can predict the degradation level of the pipeline with a
high accuracy.
1. Introduction

Having a high confidence estimation of pipelines’ degradation level
plays an important role in pipeline integrity management. Estimated
degradation level is the main input for time to failure or remaining
useful life estimation and subsequently condition-based maintenance
optimization of the pipelines. In this way, taking into account all
potential failure mechanisms is necessary. Among different potential
failure mechanism of pipelines, pitting corrosion is one of the main
concerns because of the high rate at which pits can grow [1] and
cause major failures that may impose a huge cost to the industry and
environment, or unnecessary maintenance.

Two types of algorithms are present in pitting corrosion degradation
modeling literature: defect-based and population-based. The defect-
based algorithms, in which sequential data from individual pits are
used to evaluate the growing pattern of each pit are more common
in literature. However, defect-based algorithms are inefficient and re-
source intensive when the pit density is high. When a pipeline contains
a combination of high and low density pitting segments, it is necessary
to use a combination of population-based algorithms and defect-based
algorithms. [2]. This motivates the development of the population-
based algorithms, wherein the growing behavior of a population of pits
(rather than of individual pits) is analyzed.

In this paper, we propose a novel hybrid population-based algorithm
to estimate the degradation level of piggable pipelines due to pitting
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corrosion. We use the word hybrid to denote that the algorithm takes
into account both physics of failure (POF) and inspection data. By
developing this hybrid model, the disadvantages of a pure physics-
based model (e.g., a lot of simplifying assumptions) or a pure data
driven-based model (e.g., the need for a large amounts of data) are
minimized, and their advantages (e.g., long-term damage behavior pre-
diction of physics-based models and flexibility of data-driven models)
are maximized [3].

Compared to previous literature on hybrid population-based mod-
els, our proposed model addresses temporal stochasticity of pitting
corrosion process, practical cases of having more than two ILI datasets,
and initiation of new pits after the last ILI. In this algorithm, we use
non-homogeneous gamma process (NHGP) as the underlying stochastic
process. In addition, we propose an innovative clustering approach to
cluster detected pits based on their initiation times. This approach is
based on comparing the probability mass function (PMF) of those pits
that have been initiated before a particular inspection time and are
expected to be detected at that inspection time and the PMF of those
pits that are detected at that inspection time. In order to validate our
algorithm, we simulate the actual maximum depth for a number of pits,
as the existing pits, based on a non-homogeneous gamma process and
account for probability of detection and measurement error to consider
uncertainty in pit measurement and detection. Finally, we compare the
distributions of the simulated and estimated maximum pit depth, the
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Nomenclature

ILI In-line inspection
KLD Kullback–Leibler divergence
MFL Magnetic flux leakage
NHGP Non-homogeneous gamma process
PMF Probability mass function
POD Probability of detection
POF Physics of Failure
POFC Probability of false call
PWT Pipe wall thickness
RMSE Root mean squared error
RUL Remaining useful life
SKLD Symmetric Kullback–Leibler divergence
Actual depth Actual depth of a pit without measurement

error (mm)
Measured depth Measured depth of a pit with measurement

error (mm)
Estimated depth Mean of estimated actual depth of a pit

(mm)
𝑎 Constant biased error (mm)
𝑏 Proportional biased error
𝑐 Pit initiation time index, 1 for those pits

that are initiated before 𝐼𝐿𝐼1, 2 for those
that are initiated between 𝐼𝐿𝐼1 and 𝐼𝐿𝐼2,
. . .

𝑑 Maximum pit depth (mm)
𝑑𝑖𝑗𝑐 Actual depth of a true call 𝑖 at 𝑡𝑗 with the

pit initiation time’s index 𝑐 (mm)
𝑑𝑑 Minimum depth detection threshold of an

inspection tool (mm)
𝐷𝑗 Actual maximum pit depth of true calls at

𝑡𝑗 (mm)
ℎ Bin index
𝐻 Number of bins of a histogram
𝑖 Pit index
𝑗 ILI order index
𝑘 Parameter of the power law model (mm)
𝑚𝑗 Number of detected pits at 𝐼𝐿𝐼𝑗 at 𝑡𝑗
𝑚𝑗𝑐 Number of detected pits at 𝐼𝐿𝐼𝑗 that have

been initiated at 𝑡𝑐−1
𝑚′
𝑗𝑐 Number of pits that have been initiated at

𝑡𝑐−1 and are expected to have been detected
at 𝐼𝐿𝐼𝑗

𝑚′
𝑗𝑐 Number of pits that have been initiated at

𝑡𝑐−1 and are expected to have been detected
at 𝐼𝐿𝐼𝑗

𝑀𝑗 Actual number of existing pits at 𝑡𝑗 , 𝑀0 = 0
𝑀𝑗𝑐 Actual number of existing pits at 𝐼𝐿𝐼𝑗 that

have been initiated at 𝑡𝑐−1
𝑛ℎ Number of pits in bin ℎ
𝑟𝑖𝑗 Reported depth of pit 𝑖 at 𝑡𝑗 (mm)
𝑅𝑗 Number of reported pit at 𝑡𝑗
𝑡0 Pit initiation time (year)
𝑡 Time (year)
𝑡𝑗 Time of 𝐼𝐿𝐼𝑗 (year)
𝑡𝑐−1 Pit initiation time (year)
𝑥𝑖𝑗𝑐 Actual depth of an existing pit 𝑖 at 𝑡𝑗 with

the pit initiation time’s index 𝑐 (mm)
𝑋𝑗 Vector of the actual maximum pit depth of

existing pits at 𝑡𝑗 (mm)
2

𝑦 Measured maximum pit depth (mm)
𝑦𝑖𝑗𝑐 Measured depth of a true call 𝑖 at 𝑡𝑗 with the

pit initiation time’s index 𝑐 (mm)
𝑌𝑗 Vector of the measured maximum pit depth

of true calls at 𝑡𝑗
𝑌𝑗𝑐 Matrix of the measured maximum pit depth

of true calls at 𝑡𝑗 that have been initiated at
𝑡𝑐−1

𝑌 ′
𝑗𝑐 Expected measured maximum pit depth of

true calls at 𝑡𝑗 that have been initiated at
𝑡𝑐−1

𝑦𝑐 Mean credible measured depth of the in-
spection tool (mm)

𝑦′ Predicted value for the measured depth of a
pit (mm)

𝑛ℎ Number of pits in bin ℎ
𝜈 Exponent of the power law model
𝜃 Vector of degradation model parameters, 𝑘,

𝜈, 𝛽
𝛼′𝑗𝑐 Shape parameter of the gamma process at

𝑡𝑗 for those pits that have been initiated
at 𝑡𝑐−1 by using 𝑘, 𝜈 that have been es-
timated based on the inspection data at
𝐼𝐿𝐼1,𝐼𝐿𝐼2,. . . ,𝐼𝐿𝐼𝑗−1

𝛼𝑗𝑐 Shape parameter of the gamma process at
𝑡𝑗 for those pits that have been initiated at
𝑡𝑐−1 by using 𝑘, 𝜈 that have been estimated
based on the inspection data at 𝐼𝐿𝐼1, 𝐼𝐿𝐼2,
. . . , 𝐼𝐿𝐼𝑗

𝛽 Scale parameter of the gamma process
𝜖 Random scattering error (mm)
𝜆 Rate parameter of the HPP for pits initiation

times
�̂� Point estimate of the rate parameter of the

HPP for pits initiation times

number of the existing pits, and the pit initiation rate of the homoge-
neous Poisson process.

The input data used in this work is based on in-line inspection
(ILI) reports of pipeline inspection. The ILIs are commonly based on a
magnetic flux leakage (MFL) or ultrasonic testing (UT) techniques [4]
and those reports contain the measured maximum depth of the detected
pits after processing the raw collected data (i.e., MFL or UT signals)
which have uncertainty in depth measurement (i.e., ME) and number
of pits (i.e., POD and POFC) [5].

Despite significant advancement in the smart pigs technologies and
the continuous improvement in their accuracy, their measurements still
include of different types of uncertainty including measurement error
in sizing, probability of not detecting some of the existing defects, and
false call (false positive) for some defects that do not exist [6]. In order
to address these types of uncertainty in pitting corrosion degradation
modeling, two categories of algorithms are developed in the literature.
The defect-based algorithms, in which the results of sequential ILIs of
each individual pit are used to evaluate the growing pattern of that pit
(are more common in literature) vs. population-based algorithms, in
which the growing behavior of a population of pits (and not individual
pits) is analyzed.

Existing defect-based algorithms require matching the results of
sequential ILIs based on the location of the pits. Assuming the matched
ILI datasets are available, Maes and Dann [7] proposed a defect-based
hierarchical Bayesian (HB) model to estimate the degradation level of
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oil and gas pipelines due to localized corrosion. To address the tempo-
ral stochasticity of the pitting corrosion process, they used a gamma
process as the underlying stochastic process of their model. Zhang
and Zue [8] validated Maes model by applying that model on four
real pitting corrosion data sets of sixty two pits on an 80 km natural
gas pipeline in Alberta, Canada. They also extended Maes model by
assuming inverse-Gaussian [9] and Bayesian dynamic linear model [10]
as the underlying stochastic process. In all those models, the underlying
assumption is that the operational conditions of the pipelines remains
the same for the operating life of the pipelines. Heidary and Groth [11]
developed a defect-based pitting corrosion degradation model to cover
the case when the operational conditions of a pipeline change over
time.

Despite the fact that defect-based algorithms are more common in
the oil and gas industry, they are less suitable when the pit density is
high, because the matching procedure is time consuming and prone to
error [2,12]. A population-based algorithm can be applied as soon as
new ILI data become available without further matching procedure, and
the results of this algorithm can be used to evaluate the criticality of
a pipeline segments to decide about necessity of extra effort of a local
corrosion growth analysis using matched features [2]. In other words,
in case of a high pit density, it is not cost-effective to match the ILI
data of all pits at the first place, and it is more time and cost effective
to use a population-based algorithm to recognize the critical segments
first, and then match the ILI data of just those segments.

To eliminate the matching procedure step in the case of having
high density pits, for those pits that are not critical (e.g., as experi-
enced in upstream and subsea pipelines [2]), a few population-based
methodologies have been proposed in the literature. The most recent
one was proposed by Dann and Maes [2]. They used KL divergence
method to estimate the hyper-parameters of the degradation model
and used a homogeneous gamma process as the underlying stochastic
process. They applied their model in a case study with two sets of
ILI data and did not consider the initiation of new defects after the
most recent inspection. Lu [13] developed a population based pitting
corrosion model, for nuclear power plants, using gamma process based
on a ‘‘repair-on-detection’’ strategy, which at least for pipelines, is not
applicable.

More details about this algorithm, the simulated case study, and the
results are presented in this paper as follows. Section 2 is dedicated
to the requirements and assumptions. In this section theoretical back-
ground about gamma process and HB model and the reasons that they
are suitable for this degradation modeling are explained. In addition,
the assumptions behind this algorithm are articulated. In Section 3
the developed algorithm is presented in detail and in Section 4, it is
demonstrated by a simulated case study. The conclusion is presented
in Section 5.

2. Assumptions and methods

2.1. Assumptions

This algorithm is developed based on the following assumptions:

∙ Operational conditions (i.e., probability density function of tem-
perature, pressure, flow rate, etc.) of the pipeline do not change
over time and all pits are under the same operational conditions
at each time [7,8,14].

∙ Pits are not interacting each other [2].
∙ The number of new initiated pits between each two ILI follows a

homogeneous Poisson process (HPP) [15,16]. Which means pits’
initiation times follow the corresponding uniform distribution
and the time between pits’ initiation follow the corresponding
exponential distribution.

∙ The detected pits are not mitigated by the maintenance activities
3

(no maintenance).
∙ n (n ≥ 2) sets of population-based ILI datasets are available.
These datasets are reported by the ILI service companies that
had performed the 𝑛 ILI operations at 𝑡1, 𝑡2,… , 𝑡𝑛. And those
reported ILI datasets include both true calls and false calls of
the uncertain measurement (𝑦𝑖) of the maximum depth of each
pit of the population.

∙ The measurement model of the inspection tools is available and
follows Eq. (1) [17].

𝑦𝑖 = 𝑎 + 𝑏 ∗ 𝑑𝑖 +𝑁(0, 𝜖) (1)

where 𝑎 and 𝑏 are the biased errors and 𝜖 is the random scatter-
ing error of the inspection tool which are assumed to be given
by the ILI service companies. 𝑑𝑖 is the actual depth and 𝑦𝑖 is the
measured depth of pit 𝑖, and 𝑁 stands for a normal distribution.
This equation is used to estimate the actual depth of a pit given
its measured depth.

∙ The detection threshold and the credible pit depth of the inspec-
tion tools are given by the ILI service companies. They are used
to calculate the POD (Eq. (2)) of each pit given its actual depth
and the probability of false call (Eq. (3)) corresponding to each
measured depth.

𝑃𝑂𝐷(𝑃 𝑖𝑡𝑖 ∣ 𝑑𝑖, 𝑑𝑑 ) = 1 − 𝑒𝑥𝑝(−𝑑𝑖∕𝑑𝑑 ) (2)

where 𝑑𝑑 represents the minimum detection threshold of the
inspection tool [8,12].

𝑃𝑂𝐹𝐶(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑖 ∣ 𝑦𝑖, 𝑦𝑐 ) = 𝑒𝑥𝑝(−𝑦𝑖∕𝑦𝑐 ) (3)

where 𝑦𝑖 represents the 𝑖𝑡ℎ measured depth and 𝑦𝑐 represents the
mean credible measured depth of the inspection tool [2].

2.2. Homogeneous Poisson Process (HPP)

It is well accepted that pitting corrosion comprises two main pro-
cesses: pit initiation and stable pit growth. The pit initiation process
can be a consequence of the breakdown of the passive layer (a pro-
tective layer that can be created by the corrosion products) caused
by random fluctuations in local conditions which takes some time,
usually called induction (nucleation or initiation) period [18]. The pit
initiation time varies depending on the corrosive environment and the
material properties. In some experimental works, it has been confirmed
that the distribution of the pits’ initiation times follows an exponential
distribution, and therefore pit initiation can be modeled by using a ho-
mogeneous Poisson process (HPP) [15,16]. In some other experiments,
it has been observed that the pits’ initiation times are not distributed
uniformly and pits initiation rate is a decreasing function of time for
long duration corrosion tests [19,20]. To model this behavior, non-
homogeneous Poisson process (NHPP) has been used to model the
stochasticity in pits initiation times [21,22]. In this paper, we assumed
that pits initiation times follow an exponential distribution and the
number of initiated pits at each time interval follows the corresponding
HPP with a rate parameter 𝜆.

2.3. Non-homogeneous gamma process

The probabilistic pitting corrosion models can be categorized as
random-variable based and stochastic-process based models [8]. The
main difference between these categories is that, the latter deals with
the temporal variability of the pitting corrosion process, while the
former does not capture it [8]. Among different stochastic-process
based models, gamma process is more appropriate to model pitting
corrosion process [23]. Gamma process has been used widely to model
degradation processes such as wear, fatigue, and corrosion, which
involve monotonically accumulating damage over time in a sequence
of tiny increments [24,25]. In this paper, a non-homogeneous gamma

process is used to take into account the temporal uncertainty (i.e., time
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dependent variation) in pitting corrosion process. Another reason for
using non-homogeneous (vs. homogeneous) gamma process is that, it
makes it possible to consider physics of failure knowledge about pitting
corrosion process, that is embedded in this well-accepted assumption,
that growing behavior of maximum depth of pits follows a power
function with a positive power less than one [26–30].

A gamma process is a continuous-time stochastic process {𝑋(𝑡), 𝑡 >
0} with the following properties.

• 𝑋(0) = 0 with the probability 1.
• 𝛥𝑋 = 𝑋(𝜏) −𝑋(𝑡) ∼ 𝐺𝑎(𝛥𝛼 = 𝛼(𝜏) − 𝛼(𝑡), 𝛽) for all 0 ≤ 𝑡 < 𝜏
• 𝑋(𝑡) has independent increment.

where Ga represents probability density function (PDF) of a gamma
distribution. A random quantity (𝑥) (in this study a pit’s maximum
depth) has a gamma distribution with a shape parameter 𝛼 > 0 and
a rate parameter 𝛽 > 0, if its PDF is given by:

𝑓𝑋(𝑡)(𝑥) = 𝐺𝑎(𝑥; 𝛼, 𝛽) =
𝛽𝛼(𝑡)

𝛤 (𝛼(𝑡))
𝑥𝛼(𝑡)−1𝑒𝑥𝑝(−𝛽𝑥) (4)

where 𝛤 (.) denotes the gamma function. Eqs. (5) and (6) show the
expectation and variance of the gamma process respectively.

𝐸(𝑋(𝑡)) =
𝛼(𝑡)
𝛽

(5)

𝑉 𝑎𝑟(𝑋(𝑡)) =
𝛼(𝑡)
𝛽2

(6)

According to Eq. (5), the scale parameter (𝛽) of a gamma process
is constant and time independent. Hence, the shape parameter, 𝛼(𝑡),
of a gamma process can address the temporal trend of the average
of a random variable that follows a gamma process. Hence, different
degradation rate behavior(i.e., increasing, decreasing, or constant) can
be modeled by selecting an appropriate form for the shape parameter
of a gamma process [7].

In the case of pitting corrosion, it is well-accepted that the mean
value of the maximum depth of an active pit follows a power law func-
tion with a positive exponent less than one [1,26,27]. It has been found
that pitting corrosion growth in stainless, mild steels and aluminum
alloys follows this form of function [31,32]. Therefore, in this case,
the shape parameter of the underlying gamma process follows a power
function according to Eq. (7) and the corresponding gamma process is
a non-homogeneous (non-stationary) gamma process, i.e., 𝜈 ≠ 1 [25].

𝛼(𝑡) = 𝑘(𝑡 − 𝑡0)𝜈 (7)

where 𝑘 and 𝜈 represent the parameters of the pitting corrosion degra-
dation model and 𝑡0 represents the pit initiation time. Accordingly, the
distribution of the actual depth of a pit population at 𝑡 follows a gamma
distribution given in Eq. (8).

𝑓𝑋(𝑡)(𝑥) = 𝐺𝑎(𝛼, 𝛽) = 𝐺𝑎(𝑘(𝑡 − 𝑡0)𝜈 , 𝛽) (8)

2.4. Hierarchical Bayesian (HB) modeling

In this study, we use a HB model to estimate the pitting corrosion
degradation model parameters (𝑘, 𝜈, 𝛽), and the actual depth of the
existing pits. HB modeling is an appropriate method to make scientific
inference about hyper-parameters of the distribution of an unknown
of a population, based on the observations of many individuals. It is
called ‘‘hierarchical’’, because it uses hierarchical or multistage prior
distributions [33]. This method has been used in the literature to
develop defect-based algorithms to model different types of uncertainty
(temporal, spacial, epistemic [34], measurement) related to corrosion
growth in the pipelines [7–9].

The general population-based HB model that is developed in this
study is depicted in Fig. 1. In this figure, the temporal plate indicates
the time of the 𝐼𝐿𝐼𝑗 . Based on these assumptions that operational
conditions do not change over time and all pits are under the same
4

Fig. 1. General HB model for each category of pits at each ILI time based on their
initiation time.

operational condition, a same gamma process is used for all pits for
the entire life of the pipeline. Therefore, the degradation model pa-
rameters (𝑘, 𝜈, 𝛽) of that gamma process are outside of the temporal
plate. However, the shape parameter of the gamma process, 𝛼, is time
dependent (because of the change in 𝑡𝑗 and 𝑡𝑐−1 in Eq. (7)). Therefore,
𝛼𝑗𝑐 is inside of the temporal plate and it varies at each inspection time
for each category of pits based on their initiation time. Primarily, it
has been assumed that for those pits that have been initiated before
the first ILI, the initiation time is 𝑡𝑐−1 = 𝑡0 = 0, and for those that have
been initiated between each two ILIs, the initiation time of all of them
is exactly after the most recent ILI. Finally at the prediction phase, the
pits initiation times are distributed as an HPP. Hence, after each ILI, it
is necessary to figure out which detected pits are new and which pits
have been initiated previously that may or may not be detected in the
previous ILIs. This clustering step will be discussed in more details in
Section 3.3.

In Fig. 1, 𝑥𝑖𝑗𝑐 indicates the actual depth of an existing pit i at 𝑡𝑗 with
the initiation time index c, 𝑑𝑖𝑗𝑐 indicates the actual depth of a detected
pit i at 𝑡𝑗 with the pit initiation time index c, 𝑦𝑖𝑗𝑐 indicates the measured
depth of a detected pit i at 𝑡𝑗 with the initiation time index c, and 𝑟𝑖𝑗
indicates the measured depth of a reported pit i at 𝑡𝑗 . In addition, 𝑅𝑗
indicates the number of reported pits at 𝐼𝐿𝐼𝑗 including both false and
true calls, 𝑚𝑗𝑐 indicates the number of pits that have been initiated at
𝑡𝑐−1 and are truly detected (i.e., true calls) at 𝐼𝐿𝐼𝑗 , 𝑀𝑗𝑐 indicates the
number of existing pits at 𝐼𝐿𝐼𝑗 that have been initiated at 𝑡𝑐−1. As it is
shown in this figure, some existing pit (e.g., 𝑥2𝑗𝑐) might be missed to
be detected by the ILI tool at 𝑡𝑗 . In addition, some reported pits might
be false calls (e.g., 𝑟3𝑗).

Since at each ILI there are some false calls and also some existing
pits that are not detected, the original HB model is modified to the
one that is shown in Fig. 2. The process of filtering true calls from the
reported pits is explained in Section 3.

This HB model is used to estimate the degradation model param-
eters and actual depth of the detected pits by using the Bayes rule
according to Eq. (9).

𝑃𝑟(𝑑𝑖𝑗𝑐 , 𝑘, 𝜈, 𝛽 ∣ 𝑦𝑖𝑗𝑐 ) = 𝑃𝑟(𝑑𝑖𝑗𝑐 , 𝜃 ∣ 𝑦𝑖𝑗𝑐 )

∝ 𝑃𝑟(𝑦𝑖𝑗𝑐 ∣ 𝜃, 𝑑𝑖𝑗𝑐 ) × 𝑃𝑟(𝜃, 𝑑𝑖𝑗𝑐 )
(9)
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Fig. 2. Modified general HB model for each category of pits at each ILI time based
on their initiation time.

3. Developed algorithm

3.1. General structure of the developed algorithm

Fig. 4 depicts the general structure of the algorithm which includes
three phases. According to this figure, in phase I, the first ILI dataset
is used to estimate the degradation model parameters, the number of
existing pits at 𝑡1, and the PMF of the actual depth of those pits at
that time. In phase II, the other ILI datasets are used to update the
degradation model parameters, and to estimate the number of existing
pits and the PMF of their actual depth at 𝑡2, . . . , 𝑡𝑛. The main difference
between phase I and phase II is in a clustering step. Since it is assumed
that all existing pits at 𝑡1, has been initiated at 𝑡 = 0, hence all of
them follow a same degradation model. However, at other inspections
times and the prediction time, there are clusters of pits with different
initiation times. Therefore, we use a clustering algorithm to categorize
the detected pits at each inspection time based on their initiation time
to be used on their corresponding Bayesian models. In phase III, the
rate parameter of the assumed HPP and the number of pits that are
expected to be initiated between the last ILI and the prediction time
are estimated. Finally, the PMF of the actual depth of the existing pits
at prediction time (𝑡𝑛+1) is estimated. The details of these three phases
are given in the following subsections.

3.2. Phase I: Using the first ILI dataset

In phase I, the first set of reported ILI data is used to find the first
estimate of the degradation model parameters (𝑘, 𝜈, 𝛽) of the NHGP,
the number of the existing pits, and the PMF of their actual depth at
𝑡1, by performing the following steps:

∙ Step I-1: Filter the true calls from the reported pits:
For each reported measured depth, generate a random uniform
number between zero and one. If the probability of false call of
that measured pit depth (use Eq. (3)) is higher than that random
number, remove that measurement from the dataset and if not,
keep it.

∙ Step I-2: Estimate the degradation model parameters and the
actual depth of the detected pits:
Use the measured depth of the 𝑚11 true calls at 𝐼𝐿𝐼1 and the
prior values (𝑝1,2,3, 𝑞1,2,3) in the corresponding HB (Fig. 3) to
obtain the first estimate of the degradation model parameters
5

Fig. 3. Modified HB model for 𝐼𝐿𝐼1.

and the actual depth of the true calls at 𝑡1 by using the Bayes
rule (Eq. (9)). Non informative prior distributions (i.e., uniform
distributions) can be selected for prior distributions of the hyper-
parameters in this Bayesian model (Fig. 3); 𝑝1,2,3 > 0 are the
lower bounds of the prior uniform distributions and 𝑞1,2,3 > 0
are the upper bounds. The only prior information is that the
upper bound of 𝜈, (𝑞2), is equal to one based on physics of failure
knowledge of internal pitting corrosion process.

∙ Step I-3: Estimate the number of existing pits at 𝑡1 (𝑀1) given
the number of true calls (𝑚11):
Discretize the PMF of 𝑑𝑖11 to 𝐻 number of bins and estimate the
number of existing pits at each bin by using Eq. (10) [5,35].

𝑛ℎ(𝑃𝑀𝐹 (𝑋1)) = 𝑛ℎ(𝑃𝑀𝐹 (𝐷1))∕𝑃𝑂𝐷ℎ

ℎ = 1, 2,⋯ ,𝐻
(10)

where 𝑛ℎ is the number of pits in bin ℎ and 𝑃𝑂𝐷ℎ is the
corresponding 𝑃𝑂𝐷 which can be calculated by using the mean
value of bin ℎ in Eq. (2). The total number of existing pits at 𝑡1
can be estimated by summing the frequency of all bins of the
PMF of 𝑥𝑖11 by using Eq. (11).

𝑀1 =
𝐻
∑

ℎ=1
𝑛ℎ(𝑃𝑀𝐹 (𝑥𝑖11)) (11)

∙ Step I-4: Estimate the PMF of the actual depth of the existing
pits:
For those bins that the frequency in PMF of 𝑥𝑖11 is higher
than the frequency of PMF of 𝑑𝑖11, generate 𝑛ℎ(𝑃𝑀𝐹 (𝑥𝑖11)) −
𝑛ℎ(𝑃𝑀𝐹 (𝑑𝑖11)) number of random uniform values between the
start and end depth of that bin.

3.3. Phase II: Incorporating additional datasets

In this phase, as mentioned previously, a clustering step is required
to categorize the detected pits based on their initiation time. Generally
speaking, (for 𝐼𝐿𝐼2), first we filter the true calls from the reported
measurements at 𝑡 . Then we estimate how many of the true call at
2
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Fig. 4. General structure of the developed algorithm.
𝑡1, we expect to have been detected at 𝑡2. We subtract this expected
number from the true calls at 𝑡2 to obtain the number of pits that
have been initiated between 𝑡1 and 𝑡2. The next step is to assign these
estimated number of pits to their corresponding clusters (i.e. initiated
pits before 𝑡1 or initiated pits between 𝑡1 and 𝑡2). This phase is explained
in detail for 𝐼𝐿𝐼2 as following and the same approach is applicable for
the next ILIs.

∙ Step II-1: Filter the true calls from the reported pits at 𝐼𝐿𝐼2:
For each reported measured depth, generate a random uniform
number between zero and one. If the probability of false call
of that measurement (use Eq. (3)) is higher than that random
number, remove that measurement from the dataset and if not,
keep it.

∙ Step II-2: Estimate the number of pits of each cluster that are
expected to have been detected at 𝑡2:
In this step, we want to estimate how many of those pits that
have been initiated before 𝐼𝐿𝐼1 (𝑀1) are expected to have
been detected at 𝐼𝐿𝐼2 (𝑚′

21), given the first estimation of the
degradation model parameters that are obtained in Phase I,
and the number of true calls at 𝑡2 (𝑚2). Then, we subtract that
number from the number of true calls at 𝐼𝐿𝐼2 (𝑚2) to find the
expected number of those pits that have been initiated between
𝐼𝐿𝐼1 and 𝐼𝐿𝐼2, and are expected to have been detected at 𝐼𝐿𝐼2.
The general idea of the this step is shown in Fig. 5. According
to this figure, at each inspection time, there are a number of
true calls and undetected pits. Since in a gamma process the rate
parameter is time independent, the estimated rate parameter at
𝑡1, can be used at 𝑡2. However, for the shape parameter, which is
time dependent, the estimated 𝑘 and 𝜈 in phase I, in conjunction
with 𝑡2 are used in Eq. (7) to find 𝛼′21 = 𝑘(𝑡2 − 0)𝜈 . By using
those rate and shape parameters, the expected PDF of the actual
6

maximum pit depth of the pit population can be estimated by
using Eq. (8) (𝑔′21(𝑥) = 𝐺𝑎(𝛼′21, 𝛽)). Then 𝑚′

21 can be obtained by
integrating the expected PDF times the corresponding POD on
all possible values of maximum pit depth (𝑥), multiplied by the
number of pits that have been initiated before 𝑡1 (𝑀1) (Eq. (12)).
Based on the assumption of NHGP, the expected PDF of the
actual depth of the pits that have been initiated before 𝐼𝐿𝐼1,
follows a gamma distribution (𝑔′21(𝑥)) at 𝑡2 with a shape param-
eter equal to 𝛼′21 = 𝑘(𝑡2 − 0)𝜈 and a scale parameter equal to 𝛽
(Eq. (8)).

𝑚′
21 = 𝑀1 ∫ 𝑔′21(𝑥)𝑃𝑂𝐷(𝑥)𝑑(𝑥) (12)

And 𝑚′
22 can be calculated by subtracting 𝑚′

21 from the true calls
(𝑚2) at 𝑡2 by using Eq. (13).

𝑚′
22 = 𝑚2 − 𝑚′

21 (13)

∙ Step II-3: Assign each true call to a cluster:
At this step, 𝑚′

21 number of true calls at 𝑡2 are assigned to one
cluster and 𝑚′

22 of them are assigned to another cluster. To do
so:

– Generate 𝑚′
21 random number from 𝑔′21(𝑥) and use Eq. (1)

to find the PMF of 𝑌 ′
21.

– Generate 𝑚′
22 random number from 𝑔′22(𝑥) = 𝐺𝑎(𝛼′21, 𝛽) =

𝐺𝑎(𝑘(𝑡2 − 𝑡1)𝜈 , 𝛽) and use Eq. (1) to find the PMF of 𝑌 ′
22.

– Discretize PMF of 𝑌2 and PMF of 𝑌 ′
21 with the same bins

intervals.
– Use the following pseudo code to assign each true call to

a cluster:
Divide the pits’ depth domain to H number of bins.
Set the frequency of each bin of PMF(𝑌 ) equal to zero
21
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Set the frequency of each bin of PMF(𝑌22) equal to zero
For 𝑖 = 1 to 𝑚2:
𝐵𝐼𝑖 = corresponding bin to pit 𝑖 (find out
each pit belongs to which bin).
If PMF(𝑌21[𝐵𝐼𝑖]).freq < PMF(𝑌 ′

21[𝐵𝐼𝑖]).freq:
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑛𝑑𝑒𝑥𝑖 = 1.
PMF(𝑌21[𝐵𝐼𝑖]).freq = PMF(𝑌21[𝐵𝐼𝑖]).freq + 1.

else:
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑛𝑑𝑒𝑥𝑖 = 2.
PMF(𝑌22[𝐵𝐼𝑖]).freq = PMF(𝑌22[𝐵𝐼𝑖]).freq + 1.

End
In this pseudo code, 𝐵𝐼𝑖 stands for the bin index of pit
𝑖 and .freq stands for the frequency of bin 𝐵𝐼𝑖. The idea
behind this pseudo code is that, for each pit we find the
corresponding bin. Then, if the frequency of that bin in
PMF(𝑌21) is less that the frequency of the same bin in
PMF(𝑌 ′

21), we assign that pit to PMF(𝑌21), and if not, we
assign that to PMF(𝑌22)

∙ Step II-4: Update the degradation model parameters and esti-
mate the actual depth of the detected pits at 𝐼𝐿𝐼2:
Use the clustered measurement data in 𝐼𝐿𝐼2 in the HB model
that is shown in Fig. 6 to update the estimation of the degrada-
tion model parameters and also to estimate the actual depth of
the true calls. It is worth noting that in this HB model, the prior
values for the degradation model parameters are their estimated
values in Phase I.

∙ Step II-5: Estimate the number of actual pits (𝑀2) given the
number of true calls (𝑚2) at 𝐼𝐿𝐼2:
Follow the same approach that has been used in Phase I to
estimate 𝑀2 according to Eq. (14).

𝑀2 =
𝐻
∑

ℎ=1
𝑛ℎ(𝑃𝑀𝐹 (𝑋2)) =

𝐻
∑

ℎ=1
𝑛ℎ(𝑃𝑀𝐹 (𝐷2))∕𝑃𝑂𝐷ℎ (14)

∙ Step II-6: Estimate the PMF of the actual depth of the existing
pits at 𝐼𝐿𝐼2:
For those bins that the frequency of PMF(𝑋2) is higher than the
frequency of PMF of 𝐷2, generate 𝑛ℎ(𝑃𝑀𝐹 (𝑋2))−𝑛ℎ(𝑃𝑀𝐹 (𝐷2))
number of random uniform values between the start and end
depth of that bin.

For 𝐼𝐿𝐼𝑗 , 𝑗 > 2, the same steps should be followed. To shorten the
paper, the algorithm is not demonstrated for those 𝐼𝐿𝐼𝑠 in details and
the related equations are generalized as follows:

𝛼′𝑗𝑐 = 𝑘(𝑡𝑗 − 𝑡𝑐−1)𝜈 (15)

𝑚′
𝑗𝑐 = (𝑀𝑐 −𝑀𝑐−1)∫ 𝑔′𝑗𝑐 (𝑥)𝑃𝑂𝐷(𝑥)𝑑(𝑥), 𝑐 = 1,… , 𝑗 − 1 (16)

𝑚′
𝑗𝑗 = 𝑚𝑗 −

𝑗−1
∑

𝑐=1
𝑚′
𝑗𝑐 (17)

𝑀𝑗 =
𝐻
∑

ℎ=1
𝑛ℎ(𝑃𝑀𝐹 (𝑋𝑗 )) =

𝐻
∑

ℎ=1
𝑛ℎ(𝑃𝑀𝐹 (𝐷𝑗 ))∕𝑃𝑂𝐷ℎ (18)

3.4. Phase III: Prognostics

In phase III, the rate parameter of the HPP is estimated and the PMF
of the actual depth of the existing pits at any time after the last ILI can
be predicted. This phase includes the following steps:

∙ Step III-1: Estimate the rate of HPP:
By having the estimated number of existing pits at each ILI
(𝑀1,𝑀2−𝑀1,𝑀3−𝑀2,…) a point estimate of the rate parameter
of the HPP can be estimated by using the maximum likelihood
estimation:

�̂� =

∑𝑛
𝑗=1(𝑀𝑗 −𝑀𝑗−1)
∑𝑛

𝑗=1(𝑡𝑗 − 𝑡𝑗−1)
=

𝑀𝑗

𝑡𝑗
(19)
7

t

∙ Step III-2: Estimate the number of new pits between the last ILI
and the prediction time (𝑡𝑛+1):
The mean value of the number of initiated pits between the last
ILI and 𝑡𝑛+1 is calculated by using Eq. (20), which is the mean
value of a Poisson distribution.

𝑀𝑛+1 −𝑀𝑛 = �̂� × (𝑡𝑛+1 − 𝑡𝑛) (20)

∙ Step III-3: Estimate the PMF of the actual depth of the existing
pits at 𝑡𝑛+1:
The final step is to predict the PMF of the existing pits at 𝑡𝑛+1. To
do so, for each cluster of pits, pits initiation times are randomly
generated from the corresponding uniform distribution (since
the number of pits follows a HPP, the pit initiation times follows
a uniform distribution and the initiation time intervals follow an
exponential distribution). The lower and upper bound of each
uniform distribution is equal to the start and the end point of
each inspection interval and the number of initiation times at
each time interval is equal to the numbers that are estimated pre-
viously (i.e., 𝑀1,𝑀2,… ,𝑀𝑛+1). Those generated initiation times
in conjunction with the updated degradation model parameters
are used in the corresponding NHGP for each cluster according
to Eq. (21), to estimate the PMF of the existing pits at 𝑡𝑛+1.

𝑥𝑖(𝑛+1)𝑐 = 𝑟𝑎𝑛𝑑𝑜𝑚.𝑔𝑎𝑚𝑚𝑎(𝑘[𝑡𝑛+1−

𝑟𝑎𝑛𝑑𝑜𝑚.𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑡𝑐 , 𝑡𝑐−1)]𝜈 , 𝛽),

𝑖 = 1,… ,𝑀𝑛+1

(21)

. Demonstration of the developed algorithm

In this section, the developed algorithm is demonstrated in a sim-
lated case study. Consider a pipeline that has been inspected three
imes (𝑛 = 3) by ILI, after 𝑡1 = 30, 𝑡2 = 37, 𝑡3 = 42 years of operation.
LI datasets (i.e., reported number of pits and their measured depth (a
ombination of false calls and true calls)) for a segment of the pipeline
re available. The ILI datasets are not matched because of the high
ensity of the existing pits. The goal is to estimate the number of the
ew pits that are expected to be initiated between the time of the last
LI and 50 years (𝑡4, prediction time) of operation and then using this
esult, estimating the distribution of the actual depth of the existing
its at prediction time to be used in pipeline reliability estimation and
onsequently condition-based maintenance optimization.

.1. Simulated case study data

Since the real field ILI data for a population of pits are not available
n the literature, we simulate three sets of ILI data by using a generic
nternal pitting corrosion degradation model that has been developed
y Ossai et al. [14] to demonstrate the application of the developed
lgorithm and validate the results. Ossai’s model was developed by
sing ten years (from 1999 to 2008) measurement of pit depth (using
T) and operating parameters for sixty X52 non-piggable oil and gas
ipelines in Nigeria. To the best of authors’ knowledge, Ossai’s model
s the most comprehensive generic population based model that has
een developed based on field data (rather than experimental data).
his model correlates eleven operational parameters (Table 1) with the
verage of the maximum depth of a population of pits.

The simulated data are generated by using the parameters that are
iven in Table 2. In this table the degradation model parameters are
ased on Ossai’s model [14]. The characteristics of the sizing error of
nspection tools (𝑎, 𝑏, 𝜖 in Eq. (1)) are the characteristics of an UT tool
hat has been used at 2004 in Alberta, Canada [8]). The HPP rate is
elected in a way to have the same order of magnitude of number of
its as is given in [2], and 𝑑𝑑 and 𝑦𝑐 are selected according to [12]
nd [2], respectively.

Given the assumed values in Table 2, following approach is used

o generate simulated ILI data. The number of initiated pits at each
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Fig. 5. Estimating number of the pits that were initiated before 𝐼𝐿𝐼1 that are expected to have been detected at 𝐼𝐿𝐼2.
Fig. 6. Modified HB model for 𝐼𝐿𝐼2.

Table 1
Operational parameters considered in the underlying generic model for data simulation
[14].

Parameters Units Description

T C Temperature
Pc MPa CO2 partial pressure
pH – pH
S Mg L−1 Sulfate ion
C Mg L−1 Chloride ion
W – Water cut
r Pa Wall shear stress
Gs m3 day−1 Gas production rate
OL m3 day−1 Oil production rate
Wt m3 day−1 Water production rate
Pt MPa Operating pressure

time interval is calculated by generating a random number from the
corresponding Poisson distribution with the rate parameter equal to
𝜆𝛥𝑡 (Table 3). The actual depth of each initiated pit, at each evaluation
time (inspection times and prediction time), is calculated by generating
a random number from the corresponding gamma distribution. The
shape parameter of the gamma distribution corresponding to each pit
is equal to 𝑘(𝑡𝑗 − 𝑡0)𝜈 . Where 𝑡𝑗 is the evaluation time, and 𝑡0 is the
initiation time of that pit which is a uniformly distributed (i.e., HPP)
8

Table 2
Assumed values for input data simulation.

Param. Value Param. Value

𝑘 (mm) 0.12 𝑎 (% PWT) 2.04
𝜈 0.771 𝑏 0.97
𝛽 3.5 𝜖 (% PWT) 5.97
𝜆 80 𝑑𝑑 (% PWT) 10
PWT (mm) 8.41 𝑦𝑐 (% PWT) 20

Table 3
Number of existing and reported pits at each time interval.

Time (yr) Exist. pits No. Repor. pits No.

𝑡1: 30 2374 2516
𝑡2: 37 2955 3484
𝑡3: 42 3336 3781
𝑡4: 50 3967 –

random number between the start and end point of the time interval in
which that specific pit is initiated in. The scale parameter of the gamma
process is 𝛽. In order to consider POD in simulated data, a uniform
random number is generated for each initiated pit and if that random
number is less than the POD of that pit (Eq. (2)), it is considered as
a detected pit, otherwise it is considered as an undetected one (hit-
miss POD model [17]). For each detected pit, the measurement error
is added by using Eq. (1). At this stage the PMF of the detected pits at
each evaluation time is available. In order to add the false call error to
the simulated dataset, the PMF of the detected pits is discretized to a
number of bins. Then the frequency of each bin is divided by (1-POFC)
of the mean value of that bin (using Eq. (3)) to find the frequency of the
corresponding bin in the PMF of reported pits (𝑟𝑖𝑗 in Fig. 1). For those
bins that the frequency of the PMF of the reported pits is higher than
the frequency of the PMF of the detected pits, uniformly distributed
random measurements, between the lower and upper bound of each
bin, are added to the reported dataset as false calls. The number of those
false calls for each bin is equal to the difference between the frequency
of the PMF of the reported pits and the frequency of the PMF of the
detected pits. The PMF of the reported pits are assumed as the reported
data from the ILI service companies.

4.2. Phases of the algorithm for the simulated case study

4.2.1. Phase I for the simulated case study
∙ Filter the true calls from the reported pits of 𝐼𝐿𝐼1:

Following the procedure that is explained in Step I-1, the PMF
of the true calls is extracted from the PMF of the reported
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Fig. 7. PMF of the reported and true call measurements at 𝐼𝐿𝐼1.

Fig. 8. PMF of actual and estimated pits’ depths at 𝑡1(𝑋1).

Fig. 9. PMF of actual and estimated pits’ depths at 𝑡2(𝑋2).

measurements as shown in Fig. 7. According to this figure, the
number of false measurement for pits with smaller depths is
higher than the one for the deeper ones. Hence, the number of
the filtered measurements is higher for the smaller pits.

∙ Estimate 𝑑𝑖11 and a first estimate for the degradation model
parameters:
The marginal distribution of the actual depth of the true calls
(𝑑 ) and the degradation model parameters are obtained by
9

𝑖11
Table 4
Estimated degradation model parameters at 𝑡1.

Mean SD.Dev 2.5%Qt. 97.5%Qt.

𝑘 0.51 0.29 0.11 1.04
𝜈 0.37 0.20 0.11 0.75
𝛽 3.07 0.13 2.83 3.33

Table 5
Updated degradation model parameters at 𝑡2.

Mean SD.Dev 2.5%Qt. 97.5%Qt.

𝑘 0.13 0.01 0.11 0.16
𝜈 0.72 0.03 0.66 0.76
𝛽 3.02 0.08 2.88 3.19

using HB model in Fig. 3. The estimated degradation model
parameters with 95% confidence level are given in Table 4.

∙ Estimate 𝑀1 and PMF of the existing pits at 𝑡1:
By discretizing the PMF of 𝑑𝑖11 to 𝐻 = 100 bins, and using
Eqs. (10) and (11), the estimated number of existing pits at 𝑡1
is obtained as 𝑀1 = 1816. Then the PMF of the exiting pits
at 𝑡1 is estimated by following the procedure that is explained
in Section 3.2. Fig. 8 shows a visual comparison between the
simulated and estimated PMF of the existing pits at 𝑡1. This
figure shows that for the first ILI dataset, the performance of
the developed algorithm is visually acceptable. A quantified
comparison between these two PMFs is given in the Discussion
section.

4.2.2. Phase II for the simulated case study
∙ Estimate 𝑚′21 and 𝑚′22:

The first step in phase II, is to filter the true calls from the
reported pits by following the procedure that explained in Step
II-1. Then it is desirable to estimate the number of pits that
have been initiated before 𝑡1 and are expected to have been
detected at 𝑡2 (𝑚′21). In this way 𝛼′21 is equal to 1.97 by using
the estimated 𝑘 and 𝜈 in Phase I, 𝑡𝑗 = 𝑡2, and 𝑡𝑐−1 = 𝑡0 = 0
in Eq. (15). Consequently, 𝑚′21 is calculated as 1708 by using this
shape parameter and the scale parameter that is estimated at 𝑡1
in Eq. (12). Accordingly, based on Eq. (13), 𝑚′22 = 𝑚2 − 𝑚′21 =
528. By having 𝛼′21, 𝛽, 𝑚′21, 𝑚′22, and following the procedure
that is given in Step II-3, the PMF of 𝑌 ′21 and 𝑌 ′22 are obtained.
Then, by using the given pseudo code, the detected pits at 𝑡2 are
clustered.

∙ Update the degradation model parameters and estimate the ac-
tual depth of the detected pits at 𝐼𝐿𝐼2:
The next step in Phase II is to use the clustered measurements in
the HB model that is shown in Fig. 6. It is worth noting that the
posterior distributions at Phase I are the prior distributions of
this HB model. The updated degradation model parameters are
shown in Table 5.

∙ Estimate the number of existing pits (𝑀2) and the PMF of their
actual depth at 𝑡2:
By following Step II-5 and II-6, the number of existing pits at
𝑡2 is obtained as 2541. The PMF of the simulated and estimated
actual depth of the existing pits at 𝑡2 are depicted in Fig. 9.

In the interest of brevity, the steps are not discussed in detail for
𝐼𝐿𝐼3. The updated degradation model parameters are given in Table 6
and Fig. 10 and the other results are presented briefly as following.

𝛼′31 = 𝑘(𝑡3 − 𝑡0)𝜈 = 1.93 (22)

𝛼′32 = 𝑘(𝑡3 − 𝑡1)𝜈 = 0.78 (23)

𝛼′33 = 𝑘(𝑡3 − 𝑡2)𝜈 = 0.41 (24)

𝑚′ = (𝑀1) 𝑔′ (𝑥)𝑃𝑂𝐷(𝑥)𝑑(𝑥) = 1704 (25)
31 ∫ 31
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Fig. 10. PMF of actual and estimated pits’ depths at 𝑡3(𝑋3).

Fig. 11. PMF of actual and predicted pits’ depths at 𝑡4(𝑋4).

𝑚′
32 = (𝑀2 −𝑀1)∫ 𝑔′32(𝑥)𝑃𝑂𝐷(𝑥)𝑑(𝑥) = 425 (26)

𝑚′
33 = 𝑚3 −

2
∑

𝑐=1
𝑚′
3𝑐 = 502 (27)

𝑀3 =
𝐻
∑

ℎ=1
𝑛ℎ(𝑃𝑀𝐹 (𝑋3)) =

𝐻
∑

ℎ=1
𝑛ℎ(𝑃𝑀𝐹 (𝐷3))∕𝑃𝑂𝐷ℎ = 2870

(28)

4.2.3. Prognostics phase for the simulated case study
Having those three sets of ILI data at 30, 37, and 42 years of pipeline

operation, the goal is to estimate the actual depth of the existing pits at
𝑡4 = 50. To do so, by using maximum likelihood estimation (Eq. (19)),
the rate parameter of the assumed underlying HPP (𝜆) is obtained as
68. Consequently the expected number of new pits is equal to 𝑀4 =
𝜆(𝑡4− 𝑡3) = 68×(50−42) = 544. By using the updated degradation model
parameters at 𝑡3 (Table 6) and the number of initiated pits at each time
interval, Eq. (21) is used to find the actual depth of the existing pits at
𝑡4. The PMF of simulated and estimated actual depth of existing pits at
𝑡4 are shown in Fig. 11

4.2.4. Discussion
For the sake of comparison, the mean value of the degradation

model parameters and the shape parameters of the gamma process at
evaluation times are given in Table 7. According to this table, although
10
Table 6
Updated degradation model parameters at 𝑡3.

Mean SD.Dev. 2.5%Qt. 97.5%Qt.

𝑘 0.16 0.001 0.158 0.162
𝜈 0.67 0.004 0.66 0.68
𝛽 3.17 0.013 3.14 3.19

Table 7
Comparing degradation model parameters.

Assumed 𝐼𝐿𝐼1 𝐼𝐿𝐼2 𝐼𝐿𝐼3
𝑘 0.12 0.51 0.13 0.16
𝜈 0.771 0.37 0.72 0.67
𝛽 3.5 3.07 3.03 3.17
𝛼11 1.65 1.50 – –
𝛼21 1.94 – 1.75 –
𝛼22 0.54 – 0.53 –
𝛼31 2.14 – – 1.97
𝛼32 0.81 – – 0.85
𝛼33 0.41 – – 0.47

Table 8
Comparing No. of pits.

Assumed Pit.No. Estimated Pit.No.

0-𝐼𝐿𝐼1 2374 1816
𝐼𝐿𝐼1-𝐼𝐿𝐼2 577 725
𝐼𝐿𝐼2-𝐼𝐿𝐼3 381 329
𝐼𝐿𝐼3-Prediction 631 544

the estimated 𝑘 and 𝜈, are not so close to the assumed ones, the absolute
error of the estimated 𝛽 and shape parameters (𝛼𝑗𝑐) are less than 10%
that indicates a good prediction performance.

It is also worth noting that the standard deviation of 𝑘 and 𝜈 are
decreasing by implementing new evidences (new ILI data) as shown
in Tables 4, 5, and 6. In addition, the standard deviation of 𝑘 and
𝜈 in Table 6 are small, however, in reality, it is expected to have a
higher uncertainty in the estimated parameters. The reason is related to
this assumption that all pits are under the same operational conditions
(assumed constant values in Table 2, without uncertainty) for the
whole life-cycle of the pipeline. However, in reality, the operational
conditions are different for different locations and times. The authors
have addressed change in operational conditions in a defect-based
algorithm [11]. Considering change in operational conditions in this
population-based algorithm is one aspect of the future work of this
research.

The assumed and estimated number of exiting pits at each time
interval is given in Table 8. Which relatively is a good performance
considering both probability of detection and probability of false calls.

The next comparison is on the rate parameter of the HPP. As
mentioned in phase III of the simulated case study, the estimated rate
for the underlying HPP is 72 which is in the ±10% boundary of the
assumed value (80). This ±10% criteria is selected based on the ±10%
boundary that is accepted for depth estimation in the oil and gas
industry [8].

In order to quantify the difference between simulated and estimated
distribution of the actual depth of the existing pits at each evaluation
time, Kullback Leibler divergence (KLD) [36] measure is used. Kullback
Leibler divergence is a measure to find the relative entropy between
two probability distribution of a random variable. Eq. (29) shows
this measure between two probability distribution functions (P(x) and
Q(x)).

𝐾𝐿𝐷(𝑃 ∥ 𝑄) =
∑

𝑥∈𝑋
𝑃 (𝑥)𝑙𝑜𝑔

𝑃 (𝑥)
𝑄(𝑥)

(29)

In this equation, usually P is considered as the true distribution
of data (in this case simulated actual depth of the existing pits) and
Q comes from the proposed model that is used to approximate the
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Table 9
Symmetric Kullback Leibler divergence and 𝜒2 measures.

𝑋1 𝑋2 𝑋3 𝑋4

SKLD 0.187 0.226 0.112 0.030
𝜒2 0.233 0.075 0.397 0.033
𝜒2 (Shifted distributions) 1.994 1.999 1.990 1.984

true distribution (in this paper estimated actual depth of the existing
pits(𝑋𝑗)) [37]. Larger Kullback Leibler divergence indicates less simi-
larity between the two distributions. Since Kullback Leibler divergence
is not a symmetric distance, we used symmetric Kullback Leibler diver-
gence to compare similarity between two distributions [6,38] according
to Eq. (30).

𝑆𝐾𝐿𝐷(𝑃 ∥ 𝑄) = 1∕2[𝐾𝐿𝐷(𝑃 ∥ 𝑄) +𝐾𝐿𝐷(𝑄 ∥ 𝑃 )] (30)

In case of having two distributions that are exactly the same, the
Kullback Leibler divergence and symmetric Kullback Leibler divergence
are equal to zero. In other words, the smaller value for Kullback Leibler
divergence or symmetric Kullback Leibler divergence the two distribu-
tions are more similar. The symmetric Kullback Leibler divergence for
the normalized PMF of the simulated and estimated actual depth of
the existing pits at evaluations times are shown in Table 9. According
to this results, the developed population-based algorithm has an ac-
ceptable performance (relatively small values for symmetric Kullback
Leibler divergence) and its performance is improved by arriving new
ILI data (i.e., values for 𝑋3 and 𝑋4 in comparison to the values for 𝑋1
and 𝑋2).

In addition to symmetric Kullback Leibler divergence measure, we
compared the results with 𝜒2 distance measure (Eq. (31)).

𝜒2 =
∑

ℎ

(𝑃ℎ −𝑄ℎ)2

(𝑃ℎ +𝑄ℎ)
(31)

where P and Q are the normalized histograms to be compared and index
ℎ refers to ℎ𝑡ℎ bin.

This distance measure for different evaluation times are given in
Table 9. Analogous to KLD measure, the smaller 𝜒2 shows that the two
ompared distributions are more similar. In order to have a criteria
o compare the calculated 𝜒2 distance, this measure is also calculated
or the case when there is no overlap between the distributions of the
imulated and the estimated actual depth (by shifting the simulated
istributions from the estimated distribution in a way to have no
verlap). According to Table 9, the 𝜒2 results also show that the
eveloped algorithm have a good performance in terms of predicting
he PMF of the actual depth of the existing pits at inspections times
nd also at prediction time after the last ILI.

. Conclusion

The paper presents a novel hybrid, population-based algorithm to
valuate pipeline degradation due to internal pitting corrosion when
he pit density is high. This algorithm, in combination with defect-
ased models, can be used to estimate a pipeline’s degradation level
hen a pipeline contains a combination of high and low density

orroded segments. This combined approach is more cost effective by
liminating the need of matching the ILI data for those pits that are not
ritical.

This algorithm is a hybrid one that takes into account both physics
f failure and inspection data. It employs the NHGP to address the
emporal uncertainty and the physics of failure knowledge about pitting
orrosion process and homogeneous Poisson process to model the varia-
ion in pits’ initiation times. This algorithm incorporates the sequential
LI data in degradation analysis by using the HB method and Markov
hain Monte Carlo simulation. A clustering algorithm is developed to
luster the detected pits based on their initiation times to be used in the
orresponding HB model. Different types of measurement uncertainty
11
(measurement error, POD, and POFC) are taken into account in this
algorithm.

An example involving simulated ILI data used to illustrate the de-
veloped algorithm. We assumed that three ILI datasets are available for
a pipeline segment. In addition to degradation model parameters, we
estimated the number of existing pits and the distribution of their actual
depth at each ILI time. In prognostic phase, the rate parameter of the
underlying HPP is estimated by using maximum likelihood estimation
and subsequently the number of new initiated pits in the future. Finally
we estimated the PMF of the actual depth of the existing pits in the
future which is the main input in pipeline reliability analysis and
condition-base maintenance optimization.

We verified the result of this algorithm, for the simulated case
study, by comparing the assumed and the estimated degradation model
parameters, number of initiated pits, and the rate parameter of the
HPP. In addition, we compared the PMF of the simulated and estimated
actual depth of the exiting pits at each evaluation time by using the
symmetric Kullback Leibler divergence and Chi-Square methods.

It is worth noting that lack of the real ILI data is a big challenge
in PHM of the oil and gas pipelines. Hence, it is highly recommended
that oil and gas pipelines’ owners and pipeline operating companies
collect the operational conditions and inspection data and make them
available in the public domain to make it possible for the researchers
to validate their new corrosion degradation models that finally leads
to the decrease in the number of unexpected failures and unnecessary
maintenance.

Future research should estimate degradation level to evaluate the
reliability of the pipeline (i.e., the probability of different failure modes
(small leak, large leak, and rupture)) to be used in maintenance op-
timization. The recommendation for future work of this study is to
use non-homogeneous Poisson process to model the variation in pits’
initiation times. Considering different inspection tools with different
characteristic will be investigated as well. Another potential area to
extend this study is to find an optimal number of bins to discretize the
PMFs, since this algorithm is sensitive to this number. Furthermore,
this model has considered the mean value of the estimated depth in
the calculation. It is worthwhile to add another level of complexity and
consider the variance of the estimated depth to take into account the
pits’ size uncertainty in the estimation.
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