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Abstract- Prototype battery health monitoring algorithms
(support vector machine, dynamic neural network, confidence
prediction neural network, and usage pattern analysis) were
developed and tested on the battery data (voltage, current,
temperature, etc.) collected from several 4-amp hour lithium ion
(Li-ion) battery cells supplied by United Lithium Systems. The
battery data was collected under different operating conditions
(storage and charge/discharge cycling under room and 50°C
temperatures. The results show that the battery health
monitoring algorithms is feasible for determining the health state
of a Li-ion cell yielding remaining useful life information to the
user.

Index Terms-Battery health algorithms; remaining useful life;
Li-ion batteries; virtual sensors.

I. INTRODUCTION

ELECTRICAL power is a vital resource on-board many of
NASA's and DoD's space systems. Electric power can be

generated through the use of solar cells and/or batteries (a type
of solar cell called photovoltaic can convert light energy
directly to electricity). However, light energy is not always
available to spacecraft orbiting the Earth and thus, the stored
energy in batteries must be relied upon. Batteries supply
electric power to life sustaining systems, communications
equipment, experiments, thermal management, etc. aboard
many space systems such as the International Space Station
(ISS), Crew Exploration Vehicles (CEV), Crew Launch
Vehicle (CLV), Mars Land Rovers (MLR), etc. Therefore,
batteries play a critical role in most space missions and must
provide reliable and predictable electric power.

Battery state-of-health (SOH) is an important quantity to
monitor for space applications. SOH is typically characterized
by one or more of the following: available capacity, internal
resistance/impedance, capacity fade, self-discharge rate. There
are several issues related to the health monitoring of batteries,
although many different techniques (voltage recovery,
impedance measurements, etc.) have been used to estimate
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their SOH. Voltage recovery is the common technique
employed for estimating the SOH of batteries used in back-up
environments such as telecommunications, UPS and other
storage applications [1 ][2]. In this approach the voltage
depression under load and the temporal recovery of the battery
voltage after removal of the load are monitored and used to
estimate the internal resistance of the battery. This method is
applicable to battery applications having well understood
operating modes, each having relatively stable and predictable
loads [2]. There is a lack in performance of off-the-shelf
impedance-based technology measurement techniques and
processing of the information, especially for online use.
Usually the battery condition is estimated from the value of the
impedance at a single frequency [1]. Recently, Midtronics
developed the discrete frequency immitance spectroscopy
(DFIS) approach [3] to derive the complete spectrum of the ac
impedance using only the battery's ac impedance measured at
three different frequencies. Full spectrum impedance
measurement are done off-line since they require at least 17
minutes to measure the frequency range of 1 mHz to 1 kHz
[4]. Regardless of the approach used to measure the complete
spectrum, the computationally intensive approach of complex
least squares analysis is typically used to extract equivalent
circuit parameters of the battery that are used to evaluate the
SOH of the battery. The approach of using Kalman filtering
with electrochemical [5] or electrical equivalent-circuit [6]
models to estimate SOH of a battery is time-consuming and
usually done off-line [7].

A data-driven, diagnostic and prognostic architecture for
detection, identification, and prediction of battery failure
modes based upon support vector machine and neural network
approach is proposed in this work to detect and identify
critical incipient battery failure modes and predict the
remaining battery life under different power profiles once a
failure has been detected. The architecture will utilize a usage
pattern analysis module and fuse prognostic information from
both failure and usage-pattern based algorithms. This will
enhance the reliability of batteries by providing the crew
information about the current health state and predicted
remaining life of batteries so that timely action can be taken.

II. BATTERY HEALTH MONITORING ALGORITHMS

A. Architecture

The Battery Diagnostics/Prognostic Architecture for Space



Fig. 1. Overall Diagnostic/Prognostic Architecture for
Predicting Remaining Lifetime of Batteries used in Space
Applications

B. Support Vector Machine (SVM) Based Diagnostic
Module

A Support Vector Machine (SVM) [13] is a machine
learning algorithm which has roots in the linear classification,
however, it has the ability to implicitly create high dimensional
feature space mappings (through a kernel) to improve
classifier performance. The SVM learning algorithm is driven
by a convex objective function which does not have local
minima, ensuring efficient training even for large data sets.
Thus, a soft margin SVM algorithm [14] will be developed
and tested to examine the reliability of the classification of the
selected battery related failure modes. The inputs to the SVM

Applications shown in Figure 1 depicts the basic software
modules of the proposed architecture based upon data-driven
prognostics [8][9][10]. Pre-processing of the raw sensor data
consists of filtering and normalization operations to prevent
noise and outliers from creating false positives/negatives
failure detections. The pre-processing operation also includes
feature extraction operations which map incoming data into a
feature space to aid in the diagnostic failure classification and
prognostic failure progression predictions. A support vector
machine will be used to detect and identify battery failures
specific to the space applications. The battery life prognostic
module is based on three constructs: 1) a static "virtual sensor"
that relates known measurements to battery deterioration (or
state-of-health); 2) a dynamic neural network (DNN) predictor
which attempts to project the current state of the damaged
material into the future thus revealing the time evolution of the
damage and allowing the estimation of the battery's calendar
life; and 3) a Confidence Prediction Neural Network (CPNN)
[11 ][12] whose task is to account for uncertainty and
manage/shrink the prediction bounds. For battery operation
other than under fault conditions, a mode estimator keeps track
of battery operating modes (high temperatures, discharge rates,
duty cycle types, etc.) and usage pattern analysis is performed
on the mode sequence to predict battery capacity degradation.
Linear opinion pooling is used to fuse the results of the usage
pattern and failure based battery remaining useful life
prediction.
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will be the heuristically defined features from raw data (which
will be further mapped into another feature space via the
kernel) and the output will be a sequence of bits (0 or 1)
relating to a particular failure mode.

The benefits of using the SVM classifier for battery fault
detection are: (1) it finds a unique separating hyperplane which
has maximal margin with no local minima during optimization,
unlike neural nets; (2) it has implicit feature transformation of
input data vectors into feature space via kernel; and (3)
efficient optimization is possible using dual form of the
optimization problem.

A I-Norm Soft Margin SVM is a relaxed form of the
Maximal Margin SVM which can be used to classify
nonlinearly separable data sets. The primal form of the 1­
Norm Soft Margin SVM optimization problem is:

N

minimize (w,W)+CL;i ,
i=I

subject to the constraints

Pi ((w,xi)+b) ~ 1-~i'

~i ~O, i=1,2, ...,N

where Xi E 9lM are data/feature vectors, Pi E {-I, + I} is the

class label, WE 9lM is the weight vector, (-,.) is an inner

product, C E 9l+ is a relaxation constant, ~i E 9l are slack

variables, and bE 9l is a bias value. For the purposes of

feasibility, the -1 class will represent "normal life" while +1
class will mean "near the end ofbattery life. "

o~ a i ~ C , i =1,2, ...,N .

where the ai terms constitute a dual representation for the
weight vector in terms of the training set. The dual form can be
solved using gradient descent. Using a kernel, K (e.g.

Gaussian), the derivative of Wwith respect to ai is:
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This gradient is used to calculate new values of alpha at each
training step with a chosen step size, h, as:
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After each update of alpha, the constraint°~ ai ~ C is

enforced (i.e. a; = min(max(ai,O),C)). The training algorithm

terminates once the evaluated primal and dual objective
functions are close enough. Once the a 's are known the
decision function can be calculated using:

N

y(x) =La;p;K(x;,x)+b (3)
i=l
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where K(x, y) is a chosen kernel. A more efficient learning

algorithm called Sequential Minimization [15] can also be
used.

C. Virtual Sensor

The virtual sensor calculates a failure measure indirectly
through a neural network mapping of processed sensor data,
features, and estimated mode. It is often true that machine or
component faults are not directly accessible for monitoring
their growth behavioral patterns. Consider, for example, the
case of a battery failure due to deep discharge. No direct
measurement of the copper solution concentration in the
electrolyte is possible when the component is in an operational
state. That is, there is no such device as a "fault meter" capable
of providing direct measurements of the fault evolution.
Examples of a similar nature abound.

D. Dynamic Neural Network

Prognosis of the time to failure or the remaining useful
lifetime of a component or subsystem involves prediction, Le.
the ability to determine when the component will fail once an
incipient failure condition has been detected and identified. It
is imperative, therefore, that the prognosticator monitor the
time evolution of a failure event, project accurately historical
failure data and suggest to the operator or user the most
probable (and desirable) time window for maintenance so that
equipment uptime is maximized. Signals in such a network
configuration can flow not only in the forward direction but
also can propagate backwards, in a feedback sense, from the
output to the input nodes. A Dynamic Neural Network (DNN)
is proposed to address the prediction issues. The basic
structure of a DNN is shown in Fig. 2. Delayed versions of the
input and output augment now the input feature vector and the
resulting construct can be formulated as:

Y(t +1) =DNN (Y(t),. .. ,Y(t - M) ,U (t),.· ·,U (t- N)) (5)

where U is the external input; Y is the output; M is the number
of outputs; N is the number of external inputs.

p(x) = sgn(y(x)) (4) Fig. 2. Structure of dynamic neural network that produces a
prediction from delayed feature vectors of input from virtual
sensor and operating mode modules.

The DNN can be trained in a time-dependent way, using
either a gradient-descent technique like the Levenberg­
Marquardt algorithm or an evolutionary one such as the
genetic algorithm. A virtual sensor fault measure output acts as
the input to the DNN during training (on- or off-line) and a
predicted battery fault measure will be output.

E. Confidence Prediction Neural Network (CPNN)

The CPNN module places bounds on the remaining useful
lifetime predictions made by the DNN. The following
paragraphs describe the CPNN background and function.
Based on the basic operation of the General Regression Neural
Network (GRNN), the CPNN accomplishes the goal of
representing uncertainty in the form of a confidence
distribution by employing a confidence distribution
approximator node as shown in Fig. 3.
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Fig. 3. Structure of the confidence prediction neural network

For I-step ahead prediction, a buffer of a finite number of
recent values, X, forms an input vector to the network. The
input vector is compared to patterns extracted from historical
data. Each comparison will receive a degree of matching

C(X, Jj) and a candidate output Yi. This is exactly the fITst

step of the GRNN, Le. obtaining an estimate probability

density function !(X, Y) , when it attempts to approximate an



output of an input vector. After the whole comparison process
is completed, each candidate output will be weighted by its
degree of matching to give a final contribution of confidence
as a scalar output. However, the purpose of the new
methodology is not only to get a single output, but also to
obtain the confidence distribution of that output as well. For
this purpose, the confidence distribution function CD( X, Y) is

defined using an idea from the Parzen estimator, as

1 1 I (Y _ y)2
CD(X~Y)= .-LC(X~~)exp[ 2

i
] (6)

(21i)O'CD I i=l 20'CD

where I is the number of patterns used in the comparison

process and (jeD is a scaling parameter for this confidence

distribution estimation.
As shown in Fig. 4, a typical prediction output of the CPNN

consists of a single prediction value (dashed line) and a
confidence distribution. In this case, the highest confidence
level is not located at the predicted value and the confidence
distribution, in this case, is multi-modal. The point that has the
highest confidence level is to the right of the average predicted
value. There is also another peak, which has a lesser
confidence level and is located to the left. For a longer
prediction horizon, the confidence distribution can be shown
to spread and grow over time by repetitively applying this
technique one step at a time. This indicates that as the number
of prediction steps increases, the future uncertainty increases
as well. Instead of reducing each step of prediction into a
single number, consider each peak that occurs in the multi­
modal prediction being taken as a new prediction value for the
next iteration. This multi-path of prediction is expected to
branch out like a tree into the future. As more data becomes
available and time marches on, new confidence limits are
derived and the uncertainty bounds shrink through appropriate
Q-Learning routines [16].
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Fig. 4. Output (dashed line) and confidence distribution of the
output of the CPNN.

F. Mode Estimation and Usage Pattern Analysis Module

Battery operating modes will be defined such as
high/nominal/low temperatures, discharge rates, duty cycles,
etc. The mode estimation algorithm will be composed of a
fuzzy logic expert (Takagi-Sugeno type) classifier using the
fuzzy c-means clustering algorithm taking features extracted

from battery sensor measurements and outputting classified
operating modes. A usage pattern analysis module will consist
of a dynamic neural network (ONN) trained on operating
mode/duration inputs and battery life (Le. capacity reduction)
outputs. The CPNN algorithm will be used in conjunction with
the output of the usage pattern analysis module to output a
remaining useful life (RUL) distribution.

G. Fusion ofPrognostics

The RUL distribution results of the CPNN and Usage
Pattern Analysis Module will be fused using the concept of
linear opinion pooling:

RUL.lilsed(t) =ARULfailure(t)+(I- A)RULusage(t) (7)

where, AE [0, I] is a weighting measure to allow more, equal

or less emphasis on the results of the failure RUL results. The
prognostic result is a distribution over time for remaining
useful battery life.

III. LITHIUM-ION BATTERY HEALTH ASSESSMENT EXAMPLE

Battery data (voltage, current, temperature, etc.) from
several 4-amp hour lithium ion (Li ion) battery cells supplied
by United Lithium were collected under different operating
conditions (storage and charge/discharge cycling under room
and 50° C temperatures). Prototype battery health monitoring
algorithms (support vector machine, dynamic neural network,
confidence prediction neural network, and usage pattern
analysis) were developed and tested on the collected battery
data.

A. Data Collection

Charging and discharging was performed on four Li-ion 4­
amp hour lithium ion (Li-ion) battery cells at the 1Crate (4
Amps) and either at room temperature or at 50°C. Current,
potential, and temperature were monitored continuously. At
approximately every 100 cycles, a set of diagnostics was
performed. These included charging and discharging under
normal conditions to measure the capacity of the battery,
response to step changes in current, and Electrochemical
Impedance Spectroscopy (EIS).

Fig. 5 shows the discharge curves and capacity check curves
for a lithium ion cell cycled at 50°C. It can be seen that the
voltage plateau is at higher potentials while cycling at 50°C.
This can be understood from the fact at higher temperatures
ionic conductivity increases and also the reaction kinetics
tends to be faster. But at higher temperature, degradation
mechanisms were also accelerated and so though the apparent
performance and the capacity seemed to be higher, the actual
capacity available was much lesser. Fig. 6 shows the discharge
curves and capacity check curves for a lithium ion cell cycled
at room temperature. This figure shows that the discharge
curves during cycling at 1C rate and the capacity check curves
are closer at room temperature and further supports the
argument made above for observations at high temperature
cycling experiments.



Fig. 5. Discharge and capacity check curves of a lithium ion
cell cycled at 50°C
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Fig. 6. Discharge and capacity check curves of a lithium ion
cell cycled at 50°C
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Fig. 7. EIS analysis of lithium ion cells before and after
cycling at 50°C.

Fig. 8. Battery discharge voltage vs. depth of discharge for
various cycles

B. Diagnostic Module: Support Vector Machine (SVM)

A I-Norm Soft Margin SVM using a Gaussian Kernel was
developed as a class library in Visual Studio C++ .NET 2005
to determine if the Li-ion battery was nearing the end of its
useful life. Fig. 9 shows a test run of the SVM used to initiate
prognostics based on the discharge voltage, depth of
discharge, and temperature data. The top left graph of Fig. 9
shows the training data used while the top right shows the
resulting classified space.
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Fig. 7 gives the impedance spectra of a lithium ion cell
before and after cycling at 50°C as an illustration. It can be
observed that the two semicircles (especially at 100% SOC)
are not as distinct after cycling or storage experiments as they
were in fresh cells. It is further intriguing to note that the
semicircles are smaller after cycling/storage experiments than
for fresh cells, which is quite contrary to what is usually
observed in literature. This suggests that most of the
degradation can be tied to changes in the electrolyte and
decreases in low frequency time constants.

Fig. 8 shows the discharge voltage vs. depth of discharge for
different cycles. Here the curves move in general from the
green bolded curve to the red bolded curve as the cycles
increase. Thus, one may consider that each curve in this plane
represents a battery health state.



Fig. 9. Test Run of the I-Norm Soft Margin Support Vector
Machine that maps voltage discharge vs. depth of discharge to
healthy or degraded state.

(similarly for the discharge energy vs. DoD vs. temperature).
Therefore, a virtual sensor was used to learn this mapping
from the battery data obtained.

Fig. 11 shows the scaled temperature (pink), scaled
discharge voltage (light blue), and scaled DoD (green) training
data from all batteries, the health estimates, and the learned
mapping (red is poor battery health and green is good battery
health) for temperatures 50°C. There is a shaded region
between the good and bad health regions representing the
gradual transition between the two health states. The transition
region is defined through the assigned health states from the
training data and can have "harder" or "softer" boundaries.
Fig. 11 shows a fairly distinct boundary between the two
health states. The definition of the assigned health states will
depend on the battery application.
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C. Virtual Sensor

The Virtual Sensor is realized through a multi-layer, feed­
forward, artificial neural network implementation as shown in
Fig. 10. The user can specify the number of layers and the
number of nodes in the input, output, and each hidden layer.
The hidden layers use sigmoid activation functions and the
output layer is linear. The neural network is trained using the
backpropagation algorithm (gradient descent) to minimize the
squared error at the output.

: "
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Fig. 10. Virtual Sensor Neural Net Structure

Fig. 11. Virtual sensor mapping of discharge voltage and
depth of discharge to a battery state of health measure for
cycling at 50°C

D. Dynamic Neural Network

Upon each iteration of the DNN algorithm, new data was
collected and appended to the historic data, the DNN was
trained with the historic data, and then the initial values of the
DNN were set with the most recent historic data and a
specified number of predictions were made.

Figs. 12 and 13 show the DNN prediction error results for
successive predictions using different amounts of discharge
amp-hour per cycle training data. As more data was collected
and used to train the DNN, the prediction gets better. The
dotted red line in each graph represented a predicted path
using 100 cycles of training data. The results seem to suggest
at least 50 cycles of raw data was necessary to make a good
prediction. This can be reduced further if filtering is performed
on the data before use in the DNN.
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For the purposes of health monitoring, it was noted that each
point on the discharge voltage vs. DoD vs. temperature space
can be mapped to a state of health value in the interval [0,1]
where 0 means very poor health and 1 means good health



Fig. 12. Dynamic Neural Network predictor for Discharge
Amp-hours per Cycle (Temp = 50°C).

Fig. 13. Dynamic Neural Network predictor for Discharge
Amp-hours per Cycle (Temp = 20°C).

E. Confidence Prediction Neural Network

Fig. 14 shows the results of predicting future values of
discharged amp-hours per cycle. The dotted red line represents
a user defined threshold hazard line where the battery is
declared non-usable (3.0 discharge amp hours per cycle). The
green data represents the data used to train the CPNN while
the dotted yellow lines represent the uncertainty bounds on the
prediction. An estimated time to failure in future cycles is
given showing the estimated remaining useful life of the
battery under current cycling conditions.
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Fig. 14. CPNN prediction for discharged Ah per cycle.

F. Usage Pattern Health Prediction

The usage pattern health monitoring algorithm estimates the
probability of battery failure with time while the battery is
being used in different operating modes. For each operating
mode, there exists a Weibull probability density function of
the form:

p(t) =: (*r-1

e-(~r,t ~ 0 (8)

where, f3 > 0 is a shape parameter, 17 > 0 is a scale

parameter, and t is time (t=0 is a fresh cell).
The probability that the battery will fail after a time, T, is

the cumulative distribution:

Pr(O ~ t ~ T) =fp(t)dt =l-e-(~r . (9)

The Weibull cumulative distribution parameters, f3 and 17,

can be estimated using known times to failure. Median rank
percentage can be estimated using the equation:

MR% "" i-O.3 ·100% (10)
N+0.4

The median rank is the probability of failure for a time-to­
failure, and thus the Weibull cumulative distribution is fit to
these points to find the parameters. If the times-to-failure are
known for batteries operating under different discrete
operating modes (temperature, etc.), then a Weibull
distribution can be created for each mode. Additionally, if
historic operating modes are known, then a probability
distribution can be estimated yielding the probability of a
battery operating in a mode. Thus an expected probability of
failure for a time T and historic battery operating mode
distribution can be determined via:

M

Pr(T IPr(mode»= LPr(mode=k)Prk(O<t<T) (11)
k=1

Figs. 15 and 16 show some usage pattern algorithm testing
results using simulated data for two operating modes. Fig. 15
shows that the probability of failure does not have to be
monotonically increasing due to the switching of operating
modes. Fig. 16 shows the results when the modes are switched
between randomly. This probability distribution can be fused
with the CPNN possibility distribution using the concept of
linear pooling.



Fig. 15. Probability of Failure vs. cycle # when switching
from operating mode 1 to operating mode 2 at 100 cycles.

Fig. 16. Probability of Failure vs. cycle # when switching
between operating mode 1 to operating mode 2 randomly.

and Dr. Tom Fuller of Georgia Tech Research Institute for
collecting discharge/charge cycling and impedance data for
several Li-ion batteries.

REFERENCES

[1] Singh, P. and Reisner, D., "Fuzzy Logic-Based State-of-Health
Determination of Lead Acid Batteries," International Tele­
communications Energy Conf. (INTELEC 2002), Montreal, Canada,
Sep 29 - Oct 3, 2002, pp. 583-590.

[2] Kallfelz, A., "Battery Monitoring Considerations for Hybrid Vehicles
and Other Battery Systems With Dynamic Duty Loads", Battery Power
Products & Technology, Vol. 10, No.3, May/June 2006.

[3] K. Champlin and K. Bertness, "Results of Discrete Frequency
Immitance Measurements on Lead Acid Batteries" International Tele­
communications Energy Conf. (INTELEC 2001), Edinburgh, Scotland,
2001, October 14 - 18,2001, pp. 433-440.

[4] Yoon, C.-U., Barsukov, Y., and Kim, 1.-H., "Laplace Transfom
Impedance Spectrometer and Its Measurement Method", US Patent
6,687,631 Bl, February 3,2004.

[5] Smith, K. A., Wang, C. Y., and Rahn, C. D., "1-D electrochemical
lithium-ion battery model for real-time application", AABC Conference
2006.

[6] Bhangu, B. S., Bentley, P., A Stone, D., and Bingham, C. M.,
"Nonlinear observers for predicting state-of-charge and state-of-health
of lead-acid batteries for hybrid-electric vehicles", IEEE Trans. on
Vehicular Technology, vol. 54, no. 3, pp. 783-794, May 2005.

[7] Urbain, M., Rael, S., Davat, B., and Desprez, P., "State Estimation of a
Lithium-Ion Battery Through Kalman Filter", Power Electronics
Specialists Conference (PESC 2007), June 17-21,2007, pp. 2804 ­
2810

[8] Hadden, G., Bergstrom, P., Bennett, B., Vachtsevanos, G. and Van
Dyke, 1. "Shipboard Machinery Diagnostics and Prognostics/Condition
Based Maintenance: A Progress Report", MARCON 99, Maintenance
and Reliability Conference, pp. 73.01-73.16, Gatlinburg, TN, May 9­
12,1999.

[9] Vachtsevanos, G., Wang, P., and Khiripet, N., "Prognostication:
Algorithms and Performance Assessment Methodologies", Proceedings
of MARCON 2000, Maintenance and Reliability Conference, May 8­
10, 2000, Knoxville, Tennessee, pp. 8.01-8.12, 2000.

[10] Vachtsevanos, G., Wang, P., Khiripet, N., Thakker, A., and Galie, T.,
'"An Intelligent Approach to Prognostic Enhancements of Diagnostic
Systems", Proceedings ofSPIE 15th Annual International Symposium
on Aerospace/Defense Sensing, Simulation, and Controls, Orlando,
Florida, April 16-20, 2001.

[11] Khiripet, N., Vachtsevanos, G., Thakker, A., and Galie, T., "A New
Confidence Prediction Neural Network for Machine Failure Prognosis",
Proceedings ofIntelligent Ships Symposium IV, Philadelphia, P.A.,
April 2-3, 2001.

[12] Khiripet, N., Vachtseanos, G., DeLaurentis, D., Mavris, D., and Patel,
C. '"A Forecasting Methodology with Uncertainties Representation arid
Causal Adjustment", Second International Conference on Intelligent
Technologies (InTech, 2001), November 27-29, 2001, Bangkok,
Thailand.

[13] Cristianini, N. and Shawe-Taylor, 1., "An Introduction to Support
Vector Machines and other kernel-based learning methods", Cambridge
University Press, New York, NY, 2005.

[14] Cortes, C. and Vapnik, V., "Support-Vector Networks", Machine
Learning, 20, 1995.

[15] Sun, 1., Zheng, N., and Zhang, Z., "An Improved Sequential
Minimization Optimization Algorithm for Support Vector Machine
Training", Journal ofSoftware, vol. 13,2002, pp. 2007-2013

[16] C.J.C.H. Watins and P. Dayan, "Q-Leaming", Machine Learning, vol.
8,no. 3,pp. 279-292, 1992.

J I , , , I

250 300 350 400 450 500

ModeH~ \tI1l"dow length

green -combined PtfpIe - model blue •mode 2.-/ ---~-I

I I
I
I
I
I
I

i
i
I

I
~ D B ~ m ~I

Go

Go

IV. CONCLUSION

Several health monitoring algorithms have been developed,
implemented and applied to cycling data collected from Li-ion
batteries. Initial testing of the proposed algorithms show that
they can be used to provide online estimation of the SOH and
remaining useful life of Li-ion batteries while taking into
account their usage patterns. The virtual sensor was able to
learn the mapping of voltage (or energy), depth of discharge
and temperature to poor or good battery health states. The
DNN provided accurate predictions of the remaining life of the
battery when using at least 50 cycles of raw capacity fade data.
As more cycle data was used, the prediction accuracy of the
DNN improved. The usage pattern health prediction algorithm
was able to estimate the probability of battery failure with time
while the battery was being used in different operating modes.
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